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Abstract

This paper reports on recent advances in the field of instrumen-

tal quality evaluation of text-to-speech (TTS) synthesis. In par-

ticular, a wide range of acoustic quality markers are analyzed

concerning their quality-describing power using the audiobook

data from the Blizzard Challenge 2012. Several approaches for

perceptual modeling are investigated and compared with each

other. The results reveal substantial correlations as high as 0.87

between subjective ratings of overall impression and their esti-

mates.

Index Terms: Speech quality, instrumental quality assessment,

text-to-speech (TTS), audiobook.

1. Introduction

In general, the basic functionality of TTS systems, the conver-

sion of orthographic text into spoken speech, is useful for a vast

number of applications, which are rapidly emerging through the

dissemination and performance of today’s communication sys-

tems. Although this is certainly true for specific applications,

e.g., reading systems for the blind, the mainstream adoption of

TTS is mainly governed by its perceptual quality [1]. In this

context, synthesizing audiobooks is probably one of the most

challenging applications one can imagine, because the focus is

shifted from pure functionality, e.g., reading of a weather fore-

cast, towards enjoyment of literature.

This year’s Blizzard Challenge (2012) included an evaluation

section exclusively dedicated to synthesized audiobook para-

graphs. In this paper an attempt is made to objectify the cor-

responding test results from an acoustic viewpoint. We inves-

tigate to what extent systematic patterns of quality variation

could be uncovered by means of purely acoustical features from

two perspectives, first on a basic level by analyzing individual

features, and second by evaluating regressive modeling tech-

niques provided by the machine-learning community. We em-

phasize our specific interest in seeking the potential for auto-

matic, i.e., instrumental evaluation methods for TTS on a large

non-laboratory scale, being aware that a purely acoustical ap-

proach bears challenges but, in our view, also the best perspec-

tive for the practical application. In this spirit we show work in

progress of a research field which has yet to emerge. The paper

is organized as follows: In Section 2 we provide relevant lis-

tening test details. Speech features are introduced and analyzed

in Section 3. Sections 4 and 5 report on the regression meth-

ods and their results, respectively. In Section 6 we give insight

into ongoing research of prosodic quality estimation using the

Fujisaki model. A short conclusion marks the end of the paper.

2. Audiobook Listening Test

The audiobook listening test was part of the evaluation process

of the Blizzard Challenge 2012. It consisted of two sections,

one with natural reference signals and one without. In both sec-

tions listeners had to rate stimuli generated by 10 synthesizers

named B-K, based on the same male voice corpus. A total of

231 files were evaluated. The listening test was designed be-

tween groups, i.e., all participants within one group listened to

the same stimuli. 117 paid participants were spread across 11

groups. The test took place in the test lab at the University of

Edinburgh. All stimuli were downsampled to a sampling rate of

16 kHz; the mean duration was 44 s. A subset of the attribute

scales presented in [2] was chosen for the evaluation in this test.

These scales are: overall impression, voice pleasantness, speech

pauses, accentuation, intonation, emotion, and listening effort.

The scores were given on a continuous scale. The participants

were giving the score as the distance of the handle from the left

end of the slider, but could not see the actual number. Due to

the fact that this study is based on the preliminary test results

from the test lab that did not include the results from the online

listening test, we will restrict ourselves to the overall impres-

sion ratings of the TTS systems only (N = 220). In partic-

ular, we use the median values, i.e., “median opinion scores“

(MOS), y = [y1, ..., yN ]T ∈ RN×1, with all ratings scaled to

yn ∈ [1, 5] =̂ [bad, excellent].

3. Speech Features

Two main feature classes are considered in this paper. The first

group, named “prosodic”, consists of a range of features derived

from F0 (fundamental frequency) and temporal structure; the

second group is based on mel-frequency cepstral coefficients

(MFCCs). In general, a set of features is denoted as a matrix,

X = [x1, ..., xi, ...,xI ] ∈ R
N×I , (1)

comprising N observations (stimuli) of I features. A full de-

scription of the used features is beyond the scope of this paper;

hence we will refer to other publications and rather focus on

specific features which we find important for the quality mod-

eling, especially in view of diagnostics.

3.1. Prosodic Features

Two subgroups of prosodic features are referred to in the fol-

lowing: (1) Intonational (macro-prosodic) features, and (2) per-

turbation (micro-prosodic) features, which add up to I = 26 in

total.



3.1.1. Macro-Prosodic

In previous studies, a range of F0-related features has been an-

alyzed with respect to their quality-describing power, see, e.g.

[3]. Along with basic F0 features (mean, standard deviation,

∆) and known rhythm parameters, nonlinear parameters, de-

rived from F0 dynamics in voiced sections have been identified

as useful. All features from [3] are evaluated and utilized in the

present study.

In the following we illustrate the concept of auditory threshold-

ing for prosodic quality evaluation. For notation, let F0(l, v) be
the pitch contour of the l-th voiced segment (F0(l, v) 6= 0), with
l = 1, 2, ..., L and v = 1, 2, ..., Vl. L is the number of voiced

segments per signal and Vl denotes the number of F0 samples

evaluated every 10 ms. The variability ratio (VR) is defined as

the relative number of segments with a minimum mean deriva-

tive:

VR =
1

L

L∑

l=1

δξ

(
1

Vl − 1

Vl−1∑

v=1

|∆vF0(l, v)|
)
. (2)

The step function δξ is 1 beyond a threshold ξ ∈ R
+, and 0

otherwise. The (discrete) delta operator is evaluated w.r.t. v.
Furthermore, we introduce a variant of (2) which we call the

weighted variability ratio (WVR):

WVR =
1

L

L∑

l=1

ln(Vl)δξ

(
1

Vl − 1

Vl−1∑

v=1

|∆vF0(l, v)|
)
. (3)

The weighting factor ln(Vl) accounts for the length of the

voiced sections, thus emphasizing longer sections which can be

assumed to be perceptually more relevant than very short seg-

ments. The optimum threshold ξ is evaluated by simple grid-

search, using the Pearson correlation (see Section 4) as a crite-

rion:

ξopt = argmax
ξ

|R(xVR(ξ),y)| . (4)

The result can be traced in Figure 1 for both VR and WVR. The
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Figure 1: Evaluation of the optimum threshold ξ w.r.t. correla-

tion with MOS.

optimum threshold is found at ξ ≈ 0.7, which matches quite

well the value of 0.65 found for male German voices [3]. A

detailed scatter plot for WVR is given in Figure 2. The per-

stimulus (Rstim) and per-system (Rsys) correlations are reported

along with their significance (p). With regard to the TTS sys-

tems (B-K) a clear clustering effect can be noted.

3.1.2. Micro-Prosodic

In [4] a range of so-called perturbation measures (e.g., jit-

ter, shimmer) have been analyzed. These measures were de-

signed to capture the excitation-related aperiodicity of the vocal

Rstim = .69 (p ≪ .001), Rsys = .87 (p < .005)
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Figure 2: Weighted Variability Ratio vs. MOS.

source, thus describing, at least partly, perceived voice qual-

ity. It has been found that high-rated TTS signals often ex-

hibit much higher perturbation than the lower rated ones [4],

hence more than 60% of the perceived quality variance could

be explained. One useful parameter to evaluate the (inverse)

aperiodicity without pitch marking is by means of the cepstral

peak prominence (CPP) which is defined as the average relative

hight of the first rahmonic above a normalizing regression line

through the cepstrum. Smoothing across time and quefrency

yields the smoothed CPP (CPPS) which we found to be prefer-

able. For the present data, Figure 3 illustrates a marked nega-

tive correlation, confirming our previous findings [4]. A closer

Rstim = −.59 (p ≪ .001), Rsys = −.70 (p < .05)
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Figure 3: Smoothed CPP vs. MOS.

look reveals that systems E, H, and K, for which we find the

voice quality most “buzzy” and “muffled“, exhibit high CPPS

values. It can be hypothesized that when a certain level of pe-

riodic dominance is exceeded, the quality drops markedly and

pulls down overall quality. However, a clear borderline cannot

be inferred here which could be due to several reasons, e.g.,

influence of macroprosody (see WVR). More generally, find-

ing reliable voice-quality descriptions for connected speech in

TTS is challenging: On the one hand, the ambiguity between

macro- and micro-F0 movement can hardly be totally resolved,

on the other hand, the vocal-tract filtering of the source signal

influences its perception, which in turn might affect voice nat-

uralness, since, e.g., nonlinear couplings between glottis and

vocal-tract are usually not explicitly modeled. Apart from this,

other distortions which contaminate the measurements ought to



be considered also.

3.2. MFCCs

The wide-spread MFCC description (e.g., [1]) is effectively

complementing our feature set in terms of amplitude modula-

tion; contrasting to the prosodic features since the harmonic

(F0) resolution is essentially dropped through mel-band filter-

ing (not through the “cepstral“ DCT (discrete cosine transfor-

mation)). The MFCC representation describes the shape of the

mel-spectrum through its DCT spectrum, which has low reso-

lution (e.g., 20 bins at 8 kHz sampling frequency). As such, the

MFCCs are the resulting weights of basis (cosine) functions.

We use 12th-order MFCCs, cm = {c0, ..., c12}m, calculated

for the m-th speech frame; the used features are the mean (µ)
and standard deviation (σ) of each coefficient, its delta (∆)

and delta-delta (∆(2)) values, calculated over all active speech

frames per signal. Thus, we have:

xMFCC = [µ(c,∆,∆(2)), σ(c,∆,∆(2))] ∈ R
1×78. (5)

Considering individual feature correlations, the σ values show

some consistent relationship with quality, with varying correla-

tion as shown in Figure 4. Note that a correlation of ±0.3 is

already highly significant (p < 10−4). In Figure 5, the σ values

of the fifth delta MFCC is shown. From the negative correlation

it can be inferred that the variation of the (mel) spectral differ-

ences between successive speech frames is inversely related to

the quality. In our view, this corresponds to the impression of

articulatory smoothness and continuity. A comparison to the

research line of acoustic-distance join costs in TTS [1] is inter-

esting, since the issue of measuring perceptual continuity with

spectral distance measures remains only partly solved. The cor-

relations (with MOS) that we notice for our data are compara-

ble to those for measuring the ”goodness of join“ (R ≈ .6) [1].
From Figure 4 one can also loosely hypothesize that ”envelope

continuity“ is most relevant in the DCT-frequency range 3-9.

MFCC index
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Figure 4: Correlation of standard deviations of MFCCs (Note

the flipped y axis for better readability in terms of magnitude).

4. Instrumental Quality Modeling

The ultimate goal of instrumental quality prediction is to replace

auditory tests as much as possible, hence a high scientific reli-

ability needs to be guaranteed. In Section 3 it has been shown

that research on individual features is necessary in order to gain

true insight into the nature of quality perception. Yet, due to the

multidimensional nature of perception and the inter-rater noise,

appropriate models have to account for the non-obvious (but

systematic) pattern in the data, thereby closing the variance gap

as much as possible. For the purpose of feature-based qual-

ity modeling, a vast number of machine-learning techniques

Rstim = −.65 (p ≪ .001), Rsys = −.77 (p < .01)
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Figure 5: Standard deviation of the fifth delta MFCC vs. MOS.

have been proposed [5], from which we selected a few for the

present study in order to investigate any major differences be-

tween them.

In general, we aim at solving the standard regression problem

by means of supervised learning, that is to find a model f(X)
which minimizes the error between subjective auditory ratings

y and their estimates ŷ:

‖y − f(X)‖22 = ‖y − ŷ‖22 !
= min. (6)

For realistic datasets (samples) we can usually only achieve

an estimate f̂ of the true model f . Assuming ∆y 6= 0, the
model fit can be expressed as normalized root-mean-square-

error (RMSE):

ǫ(y, ŷ) =
‖y − f̂(X)‖2√

N |max(y)−min(y)|
, (7)

where max(·) and min(·) give the maximum and minimum

entry of the argument vector, respectively. Another criterion,

which specifically focuses on linearity, is the Pearson correla-

tion which we like to maximize:

|R(y, ŷ)| =
∣∣∣∣
(y− yµ)

T · (ŷ − ŷµ)

‖y − yµ‖2 · ‖ŷ − ŷµ‖2

∣∣∣∣
!
= max, (8)

where the index µ indicates a vector of replicating mean. In the

following we describe the regression methods used in the ex-

periments. Since not all methods are equivariant under scaling,

any feature matrixX and target vector y is z-score-normalized

(standardized) before processing, thus the regressive intercept

does not need to be explicitly considered.

4.1. Cross-Validated Feature Selection (CV-FS)

Correlation-based feature selection is applied according to the

wrapper approach [6]. Two cross-validation (CV) loops are

adopted which both involve linear multiple regression model-

ing; in the inner loop, repeated feature selection is conducted

[3] where the average feature importance (AFI) serves as selec-

tion criterion for the features used in the outer loop, denoted as

X̃ ∈ R
N×P , with P ≤ I . Using (6), a model f̂(X̃) = X̃β̂ can

be found by the least-squares solution:

β̂LS = (X̃T
X̃)−1

X̃
T
y, (9)

where β̂ denotes the vector of regression coefficients. By us-

ing only the selected features X̃, we practically found the ma-

trix rank issues to be uncritical, which would not necessarily be



the case when using the full matrixX, due to highly correlated

columns (”multicollinearity“).

4.2. Ridge Regression (RR)

This shrinkage method, designed to explicitly reduce the prob-

lem of multicollinearity in X, can be seen as more continuous

than feature selection since individual features are usually not

dropped. The basic idea is to introduce a penalty parameter λ
that regularizes the size of the regression coefficients which are

obtained through

β̂ridge = argmin
β

{
‖y −Xβ‖22 + λ‖β‖22

}
. (10)

The closed-form solution is

β̂ridge = (XT
X+ λI)−1

X
T
y, (11)

where I denotes the identity matrix. The effective shrinkage

can be shown to depend on the eigenvalues of X, hence those

directions that have large variance are granted larger βis than

those with smaller variance [5].

4.3. The Lasso

The lasso is a modified version of Ridge Regression, whereby

the L2 ridge penalty is replaced by the L1 lasso penalty

‖β‖1 =
∑ |βi|:

β̂lasso = argmin
β

{
1

2
‖y −Xβ‖22 + λ‖β‖1

}
. (12)

The solution is nonlinear in y and a closed form solution is lost.

Practically, the main difference that can be observed is that the

lasso can shrink some βis exactly to zero, thus performing a

type of continuous subset selection.

4.4. Principal Component Regression (PCR)

Redundancy inX can be effectively reduced by principal com-

ponent analysis (PCA), thus (9) is simply applied for a trans-

formed feature matrix X̃ = ZPCA
(P ) using the first P < I prin-

cipal components of X. Since the transformed input columns

zp = Xvp are orthogonal, with the p-th eigenvector vp defin-

ing the linear combination of the xi, the regression is equal to

the sum of univariate regressions of y on zp [5].

4.5. Partial Least Squares (PLS)

In contrast to PCR which keys only on high variance in the fea-

ture matrix (not necessarily yielding the best model to explain

y), PLS takes into account the correlation with y. Similar to

PCR, the regression is performed using derived inputs (partial

least squares directions), where a weighting of each input w.r.t.

their univariate effect on y is incorporated. More details can be

found in [5].

4.6. ν-Support Vector Regression (SVR)

In contrast to the previous methods, the modeling criterion is

not evaluated for the complete data, rather the focus is shifted

towards specific observations by application of the ǫ-insensitive
loss function [7],

|y − f̂(x)|ǫ = max{0, |y − f̂(x)| − ǫ}, (13)

which considers only major errors beyond some ǫ > 0. For the
sake of convenient notation, we now refer to the single observa-

tion case, i.e., our data is of the form

{(x1, y1), ..., (xn, yn), ..., (xN , yN )|xn ∈ R
1×I , yn ∈ R}.

(14)

We now aim to find a linear inhomogeneous function

f(x) = xβ + β0 , β ∈ RI×1, β0 ∈ R, by minimizing the

following expression:

minimize
1

2
‖β‖22 + C ·

(
νǫ+

1

N

N∑

n=1

(ξn + ξ∗n)

)
(15)

subject to (xnβ + β0)− yn ≤ ǫ+ ξn (16)

yn − (xnβ + β0) ≤ ǫ+ ξ∗n (17)

ξ(∗)n ≥ 0, ǫ ≥ 0. (18)

The regularizing parameter C determines the trade-off between

model complexity and training error (observations lying out-

side the ǫ-region by ξ
(∗)
n ). Via the constant ν the size of ǫ is

conveniently determined, since ν ∈ [0, 1] is the sensible setting
range. Incorporating an arbitrary kernel function, the estimate

of the regression function can be shown to be [7]:

f̂(x) =

N∑

n=1

(α̂∗
n − α̂n)K(xn,x) + β̂0, (19)

where α̂
(∗)
n are constrained Lagrange multipliers. (α̂∗

n − α̂n) is
typically only nonzero for part of the data, these cases form

the support vectors which define the regression. The radial

basis function is chosen as a kernel function, K(xn,x) =
exp(−‖xn−x‖2/2σ2), thereby accounting for nonlinear interac-

tions between features. We use the LIBSVR library [8] with

default configuration parameter settings.

5. Results and Discussion

Figures of merit are summarized in Table 1. We give averaged

correlations R
(CV)

and errors ǫ(CV) from 100 random 5-fold CV

trials, i.e., we report the model performance using the test sets

only. The feature categories “Prosodic” and “MFCC” are used

separately and in combination. The penalty parameters for RR

and the lasso have been evaluated by 4-fold CV on the training

sets. The number of components for PCR and PLS have been

set empirically to 8 and 4 respectively. We need more compo-

nents in PCR than in PLS for PCR to work reasonably well, but

still PLS performs better and is thus preferable. SVR can be

identified as the best modeling technique for our data. Regard-

ing the feature groups, the MFCCs work somewhat better than

the prosodic ones; in any case the combination yields the best

result. These results show that the information gain from in-

dividual features to feature combination is considerable. Also,

CV correlations around .85 show that modeling of the present

audiobook data works much better than for the data of previous

Blizzard Challenges [9]. We see one main reason for this in the

greater stimulus length of the audiobook data. In Figure 6 we

present the model performance for CV-FS from one complete

CV trial, i.e., with averaged regression coefficients.

6. Ongoing Research on Prosodic Quality

Currently, we are investigating to what extent explicit prosody

models could be beneficial for deriving features for an improved



MODEL
PROSODIC MFCC COMBINED

R
(CV)

ǫ(CV) R
(CV)

ǫ(CV) R
(CV)

ǫ(CV)

CV-FS 0.78 0.14 0.83 0.13 0.84 0.13

Ridge 0.79 0.18 0.85 0.17 0.87 0.17

PCR (P=8) 0.76 0.15 0.82 0.13 0.84 0.13

Lasso 0.79 0.14 0.83 0.13 0.86 0.12

PLS (P=4) 0.80 0.14 0.85 0.12 0.86 0.12

ν-SVR 0.83 0.13 0.86 0.12 0.87 0.11

Table 1: Figures of merit of quality prediction models using

different feature sets (5-fold cross-validation).

Rstim = .85 (p ≪ .001), Rsys = .98 (p ≪ .001)
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Figure 6: Subjective MOS vs. estimated MOS for one CV trial

of “CV-FS” using the average regression coefficients β̂.

description of prosodic quality. In [10] we introduced a TTS-

quality predictor based on the Fujisaki model [11]. This sec-

tion gives a brief overview of this approach and the results that

could be achieved on a subset of the present audio data using

an independent as well as an optimized model. The results are

preliminary in that the methodology differs from the previous

part of the paper for organizational reasons, however, a fusion

of the approaches is scheduled.

6.1. Fujisaki Model

Generally, F0 contours of speech signals are characterized

by a decline from the onset towards the end of an utterance.

During word accents the F0 contour is superposed by local

intonation humps. The Fujisaki model follows this principle

by describing an F0 contour as a superposition of phrase (PC)

and accent commands (AC) and an underlying base frequency

(BF). PCs consist of several starting points, each of them with

a specific amplitude. Thus, they describe a set of impulses.

ACs consist of starting and ending points that describe a set of

stepwise functions. The time within one pair of starting and

ending points represents an accented block. The BF describes

the minimum value of the logarithmized F0 contour throughout

the signal.

The PCs and ACs are the input for two critically-damped

second-order linear systems to these commands (phrase-control

mechanism and accent-control mechanism, respectively). The

PCs and ACs are assumed to be smoothed by the low-pass

characteristics of their respective control mechanisms. The

output of those control mechanisms (the phrase components

and accent components) and the BF are then joined to form

the pitch curve of an utterance. Thus, this model reduces

the complexity of a pitch contour to a minimal set of three

parameters (PC, AC, and BF) that still capture the main aspects

of the pitch curve.

6.2. Fujisaki Features

We used the Fujisaki model, implemented especially for the

German language [12], to extract the parameters introduced

in Section 6.1 for every signal under test. We then computed

47 statistical features based on these parameters. They com-

prise mean, minimum, maximum values as well as the variance

of the extracted parameters. Moreover, we computed several

features based on the quantity of increasing/decreasing (in rela-

tion to the previous command) PC/AC segments in a signal. For

a detailed description of all features see [10].

6.3. General German Fujisaki Predictor (GFP)

6.3.1. Training Database

We used data from 4 German auditory TTS databases in the

training process of a Fujisaki predictor for general German TTS

samples. The databases comprised files of at least 6 different

synthesizers per gender. All in all the training database con-

sisted of 114/111 female/male TTS signals. For a detailed de-

scription see [10].

6.3.2. Model

We conducted one stepwise multiple linear regression analysis

for each gender. The auditory mean opinion score (MOS) was

used as response variable y while the 47 Fujisaki features (X)

described in Section 6.2 were extracted for the files from the

training database and used as predictors. For both genders one

significant model could be created. To test for over-fitting ef-

fects a leave-one-out CV was conducted. The R2 values for

both models could be confirmed; the root-mean-square error

(RMSE) showed a minor increase. Thus, both models can be

accounted to be stable.

6.4. Audiobook Fujisaki Predictor (AFP)

The same approach as Section in 6.3 was used to create a Fu-

jisaki predictor optimized for the present (English) audiobook

data.

6.4.1. Audiobook Database

The duration of the input files for the Fujisaki model by Mix-

dorff [12] is roughly limited to data on sentence level. There-

fore, the audiobook files were first manually split up to meet

this criterion. Due to this time-consuming process, the follow-

ing preliminary analysis is based on a subset of N = 68 audio-

book files. This lead to a set of 459 files for which the Fujisaki

features (as described in Section 6.2) were computed (files with

less than 3 PCs were omitted). In a next step we calculated the

mean value of each Fujisaki feature for each of the 68 files.

6.4.2. Model

We conducted a stepwise multiple linear regression analysis.

The auditory MOS (y) was used as response variable while the

47 Fujisaki features were used as predictors (X).

In Table 2 we list the selected features for the optimized model,

its beta values (B), their standard error (SE B), and their stan-

dardized values (β). The two selected features denote the mean



amplitude of PCs (mean pc amp) and the mean distance be-

tween starting points and ending points of the ACs in the signal

(mean dist ac sp ep). To test for over-fitting effects, a leave-

Table 2: Results of the stepwise multiple linear re-

gression analysis for the audiobook database. R2 =
.31.

FEATURE B SE B β

constant 2.996 0.679

mean pc amp 4.175 0.999 .437 ∗∗∗

mean dist ac sp ep -5.843 2.216 -.276 ∗

∗p < .05. ∗∗∗p < .001.
Note: see text for explanation of the features.

one-out CV was conducted. The R2 and RMSE value could be

confirmed. Thus, the models can be accounted to be stable.

6.5. Results

We used both predictors to compute the predicted MOS (ŷ) for

the 68 files from the audiobook database. As a measure of accu-

racy we report on the Pearson correlation R and the normalized

error per file and per synthesizer, see Table 3. The GFP achieves

Table 3: Pearson Correlation and normalized error be-

tween predicted MOS and auditory MOS.

GFP AFP

R ǫ R ǫ

per stimulus .42∗∗ 0.38 .56∗∗ 0.30

per system .61∗ 0.35 .71∗∗ 0.25

∗p < .05. ∗∗p < .01.

a medium correlation of .42 per file and a strong correlation of

.61 per system. Even though the results show that this approach

does not cover all relevant aspects of the overall quality, it is still

encouraging to see that the GFP performs well on a completely

independent database (i.e., different TTS systems, different lan-

guage, different use case).

The AFP trained on the audiobook database achieves strong cor-

relations per file and per synthesizer. We do expect to further

improve this model as soon as there is more training data avail-

able. This would lead to a model with more than two features

which presumably improves the predictions. Figure 7 shows

the scatter plot of subjective vs. predicted MOS using the AFP

model.

7. Conclusion

In light of the results reported in this paper, the feasibility of in-

strumentally predicting perceptual quality of synthesized audio-

books has been demonstrated. We conclude that joint research

on the feature and the model level is necessary for predictions

that are robust but also interpretable. In the future we will work

on the optimum fusion of all introduced features and regression

methods for modeling the most relevant aspects of TTS quality,

aiming for a multidimensional diagnostic prediction model that

allows for an unbiased indication and understanding of percep-

tual quality differences in TTS.
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Figure 7: Subjective MOS vs. estimated MOS for the AFP.

8. Acknowledgements

The authors would like to thank the Blizzard Challenge orga-
nizers for providing the audiobook database. This work was
supported by the Deutsche Forschungsgemeinschaft (DFG) un-
der grants HE 4465/4-1 and MO 1038/11-1.

9. References
[1] P. Taylor, Text-to-Speech Synthesis. Cambridge University Press,

2009.

[2] F. Hinterleitner, G. Neitzel, S. Möller, and C. Norrenbrock, “An
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