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Abstract
In this paper, we introduce a trajectory tiling method guid-
ed by deep neural networks (DNNs) for text-to-speech
(TTS), which is the entry to Blizzard Challenge 2016
by I2R-NWPU-NTU team. We build a deep bidirec-
tional LSTM (DBLSTM) based network to predict the
phoneme level duration and frame level acoustic param-
eters. After the acoustic parameters are predicted, the
best units are selected from the database using a trajec-
tory tiling method. Experiments demonstrate that, under
the DBLSTM framework, the context information of a
phoneme extracted in text processing will help the dura-
tion prediction, while not help the acoustic modeling. The
results of subjective evaluation are also discussed.
Index Terms: Blizzard Challenge 2016, Text-To-Speech,
DBLSTM-RNN, Trajectory Tiling

1. Introduction
This paper introduces the system submitted to Bliz-
zard Challenge 2016 by Institute for Infocomm Research
(I2R), A*STAR, Singapore, Northwestern Polytechnical
University (NWPU), Xi’an, China, and Nanyang Techno-
logical University (NTU), Singapore.

The task of Blizzard Challenge 2016 is to build a voice
that is able to read audiobooks for children. About 5 hours
of speech corpus, which is the voice of a same female s-
peaker, were released as the training data. The data is
selected from children’s audiobooks produced by profes-
sionals. A testing set of sentences are also provided. All
participates are asked to generate the speech files on the
testing set, and submit the files to the organizer. A large
scale subjective evaluation will be conducted. The partic-
ipates are allowed to use external data except some exclu-
sions given in the rules.

Recently, motivated by the success of Deep Neural
Networks (DNNs) in speech recognition, many DNN re-

search attempts have been tried in the speech synthesis
field [1, 2]. DNN offers a powerful modeling paradigm
for the complex relationship between input features and
output features. Recurrent Neural Networks (RNNs), es-
pecially with bidirectional Long Short Term Memory (L-
STM) cells [3, 4, 5, 6, 7], in principle can capture infor-
mation from anywhere in the feature sequence. The deep
bidirectional LSTM (DBLSTM) architecture, which is the
integration of deep bidirectional RNN and LSTM, by tak-
ing advantages of DNN and LSTM, can model the deep
representation of long-span features more precisely. The
system proposed in this work is a trajectory tiling method
guided by DNN. A DBLSTM architecture is built to do
prosody and acoustic modeling. After the acoustic param-
eters are predicted, a trajectory tiling method is employed
to select the best units from the database. No external
training data was used in our system.

2. Data Processing

2.1. Preprocessing and Alignment

The audiobook data provided by the organizing commit-
tee contain two parts: the transcribed part and the untran-
scribed part. The transcription provided consists of time
indices accompanied with pure texts without punctuation.
Only scripts in PDF format are provided for the untran-
scribed part. For the first part we use the provided time
indices directly. But we try to find the original texts from
the book scripts provided based on the pure texts. The o-
riginal texts contain punctuation marks. These are helpful
for generating more accurate full-context labels. For the
second part we make our own transcription based on the
scripts in PDF format. All the audio books are convert-
ed and segmented into sentence level wave files with their
corresponding original texts. Then we put the combined
dataset through our Automatic Speech Recognition (ASR)



engine to do phoneme level alignment. The ASR engine
takes pronunciation variations into account. The phoneme
sequence for a certain word is the most likely one based
on the acoustic model pre-trained with a large database.
This phoneme level alignment is the basis of full-context
label generation and acoustic modelling.

2.2. Text Analysis

The lexical features used to generate full-context label
can be classified into four categories: phoneme, sylla-
ble, word, and syntactic phrase. Phonemes and syllables
of words are obtained from our dictionary. The Part-Of-
Speech (POS) is obtained using a simple statistical tag-
ger which achieved 91% accuracy on the Brown cd, ce,
cf subsets in the Penn Treebank-3 corpus 1. The contex-
t of phonemes, syllables and POS of words in an utter-
ance are considered. Position information is an important
feature for TTS. The forward and backward position of
a phoneme in the syllable, the position of a syllable in a
word, and the position of a word in a phrase are all used
as features in our system. The syntactic phrase informa-
tion is added to improve the prosody modeling. We use
ZPar [8] to obtain the syntactic tree of a sentence. The
details of the features are shown in Table 1.

3. Speech Synthesizing
In the synthesis stage, the full-context labels of the
test sentences are first converted to input vectors of our
phoneme level duration model. Then we use the trained
duration model to predict the frame number of each
phoneme of the sentences. With the frame numbers and
the phoneme level features, a sequence of frame-level lin-
guistic features is generated and fed into the acoustic mod-
el to predict acoustic parameters. The generated parame-
ters are then used for trajectory tiling.

3.1. Duration Prediction and Acoustic Modeling

A hybrid of DNN and BLSTM-RNN is built for our dura-
tion prediction and acoustic modeling. There are 4 hidden
layers with 256 nodes per layer, where the bottom 2 hid-
den layers are feed-forward structure with sigmoid activa-
tion functions, while the top 2 hidden layers are Bidirec-
tional RNN structure with LSTM (128 forward nodes and
128 backwards nodes).

Input feature vectors for duration prediction are gen-
erated from the full-context label we get from Section 2
and time-aligned frame-by-frame with the output features.
The categorical features like phonemes, POS types, and
phrase types are transferred to binary features. The po-
sitions of phonemes, syllables and words are numerical
features. There are a total of 348 dimensions in the input
vectors, where 295 dimensions are binary features for cat-
egorical linguistic contexts and 53 dimensions are numer-

1https://catalog.ldc.upenn.edu/LDC99T42

ical linguistic contexts. As the context information has
been naturally considered in the LSTM network, we do
another experiment, in which we remove the context infor-
mation in the full-context label. All the information like
previous and next phonemes, POS types of previous and
next words are removed. A new feature vector is gener-
ated, in which only the properties of the current phoneme
are used. This vector contains 106 dimensions, where 81
dimensions are binary features for categorical linguistic
contexts and 25 dimensions of numerical features.

The output of the duration prediction is a vector with
five dimensions, which are the frame number of previ-
ous two phonemes, the current phoneme and the next two
phonemes.

The input feature vector for frame level acoustic mod-
eling is almost the same with those for duration predic-
tion, except that 3 dimensions containing frame informa-
tion are added: the frame numbers in the current phoneme
as well as the forward position and the backward position
of the current frame in the phoneme. This results in the
input feature vector which has context information con-
taining 351 dimensions and the input feature vector which
does not have context information containing 109 dimen-
sions. The output of the acoustic modeling network is a
vector with 51 dimensions, which are parameters includ-
ing 41-dimensional LSPs and linearly interpolated F0 in
log-scale with their previous 4 and next 4 F0, plus a voic-
ing/unvoicing (V/UV) flag. Both of the input and output
features are normalized by mean-variance normalization
(MVN).

3.2. Trajectory Tiling

In general, the longer the units are used for trajectory
tiling, the less concatenation points are needed and the
higher the voice quality will be obtained. Nevertheless,
considering the capacity of the corpus, frame (5ms) seg-
ments are used for tiling in this work.

3.2.1. Unit Pre-selection and Lattice Construction

Target cost, the distance between generated parameter tra-
jectories and units in database, is used to pre-select the
candidate units for lattice construction. The distances of
F0, gain and LSP features are defined respectively by [9]

dF0 = |log(F0t)− log(F0c)| (1)

dG = |log(Gt)− log(Gc)| (2)

dω =

√√√√1

I

I∑
i=1

wi(ωt,i − ωc,i)2 (3)

wi =
1

ωt,i − ωt,i−1
+

1

ωt,i+1 − ωt,i
(4)

where absolute value in log domain is used to evaluate
F0 and gain distance, while LSP distortion is measured



Category Feature detail

Phoneme Pre-previous, previous, current, next, and next-next phoneme
Position of current phoneme in the current syllable (forward and backward)

Syllable

Number of phonemes in current, previous, and next syllables
Vowel of current syllable
Number of syllables in the utterance
Position of current syllable in the word (forward and backward)
Syllable number of current, previous, and next words
Are previous, current, and next syllable accented or not
Number of syllables from the previous accent syllable to the current syllable
Number of syllables from the current syllable to the next accented syllable

Words Part-Of-Speech (POS) of previous, current, and next words
Number of words in the utterance

Syntactic Phrase

Phrase type of father phrases (FPs) of current, previous, and next words
Phrase type of grandfather phrases (GPs) of current, previous, and next words
Level of FPs and GPs of current, previous, and next words
Forward and backward indices of current word in FP

Table 1: Lexical features used in this work.

by a weighted root mean square. Owing to the intrinsic
property of LSP, in Eq. (4), the inverse harmonic mean
weighting (IHMW) function is used to evaluate weights
wi [10]. In view of the fact that frame units are used, no
alignment is needed for distance calculation. Finally, the
distances of these three features are first weighted, and
then added together:

d(ut, uc) = wF0d̄F0 + wGdG + wωdω. (5)

To avoid the weight tuning, we normalize the distances
of all features to a standard normal distribution with zero
mean and unit variance and the resultant normalized dis-
tance is

d(ut, uc) = N(d̄F0) +N(d̄G) +N(d̄ω). (6)

3.2.2. Dynamic Programming-based Search and Con-
catenation

With Eq. (6) as target cost for dynamic programming-
based search, we use Normalized Cross-Correlation (NC-
C) as the objective measure of concatenation smoothness
for searching the optimal unit path, namely join cost. Giv-
en two time series x(t) and y(t), the NCC r(d) between
them can be calculated by

r(d) =

∑
t[(x(t)− µx) · (y(t)− µy)]√∑

t(x(t)− µx)2 ·
√∑

t(y(t)− µy)2
. (7)

In order to calculate the NCC, overlap between adjacen-
t waveform units is needed. However, to avoid length
shrinking, we extend waveform units with waveform con-
texts. As for join cost, we shift adjacent waveform units
to maximize the NCC, recording the corresponding off-
set. Then dynamic programming-based Viterbi search is

used to find the optimal unit path which minimizes the
accumulated weighted target and join cost. Finally, ad-
jacent waveform units along the optimal path are shifted
by the recorded offset and concatenated with triangular
cross-fading.

4. Experimental Results

A total of 5,425 sentences were used in our experiments.
We randomly selected 5,000 sentences for model training,
225 for development, and 200 for testing. We conducted
two groups of experiments to investigate the influence of
context information of the input linguistic features both
on acoustic modeling and duration modeling.

4.1. Duration Prediction

We use root mean squared errors (RMSE) as the evalua-
tion criterion. The results obtained on the testing set are
listed in Table 2.

Table 2: Results of phoneme level duration prediction.

Input Duration RMSE (ms)
No context 26.04
With context 25.61

From the results, we can see that the input vector which
does contain context information has the lower RMSE of
predicted phoneme duration. This suggests that the prop-
erties of the neighboring phoneme, word and syllable may
provide useful information for the prediction of curren-
t phoneme durations. Hence, we use the one which con-
tains context information to train our final duration model.



4.2. Acoustic Modelling

The results of acoustic modeling are listed in Table 3.
Log-spectral distance (LSD), root mean squared errors
(RMSEs) of F0, and voiced/unvoiced error rates (V/UV)
are used to evaluate the model.

Table 3: Results of acoustic modelling.
Input LSD (dB) F0 RMSE (Hz) V/UV (%)
No context 0.175 49.774 6.431
With context 0.177 48.431 6.559

From the results, we can see that including contex-
t information in the input feature vector can reduce the
root mean square error of F0. However, the input feature
vector which does not contain context information has
the lower log spectral distance and voiced/unvoiced error
rates. This may suggest that BLSTM can powerfully learn
the long context dependencies. Including the neighboring
phoneme, word, syllable and phrase properties may some-
how weaken the properties of the current one, and result
in the poor prediction especially for spectral information
and UV. Hence, we use the one does not contain context
information to train our final acoustic model.

4.3. Subjective Evaluation Results

In Blizzard Challenge, all participates will generate the
audio files for a set of testing sentences, and submit them
for evaluation. Three types of listeners are invited to e-
valuate the submitted systems this year: paid participants,
volunteers, and speech experts, respectively. Here we only
select the results given by the paid participants. There are
a total of 1251 sentences in the 2016 testing set. To evalu-
ate the systems’ capability of utilizing linguistic context, 4
types of speech files need to be generated, namely books,
chapters, pages, and lines. In the book speech file, a whole
book is read. In the lines speech file, only one sentence
is spoken. There are also 200 Semantically Unpredictable
Sentences (SUS) and 200 news sentences provided, which
are the same with those of 2012 and 2013 [11]. The eval-
uation results of all systems are shown in Figures 1, 2, 3,
and 4. Our team is marked as O. System A is natural
speech, System B is an unit selection based system sub-
mitted by CSTR in Blizzard Challenge 2007 [12], System
C is the HTS benchmark, System D is a DNN benchmark
and Systems E to Q are different participants.

Figure 1 illustrates the Mean Opinion Scores (MOS) for
audiobook paragraphs. Our system obtained an average
MOS of 19, which is lower than System B (26) and Sys-
tem D (25), and is higher than System C (17). Figures 2
shows the MOS of naturalness given by the paid listener-
s. System O got a mean score of 2.4, which is higher than
System D (2.1) and System C (1.8), and is lower than Sys-
tem B (3.2). Figure 3 shows the MOS of similarity to the
original speakers. System O obtained an an average score
of 2.1, which is higher than System C (1.5) and System D

Figure 1: Mean Opinion Scores for audiobook paragraphs
given by paid listeners.
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Figure 2: Mean Opinion Scores for naturalness given by
paid listeners.
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(1.9), and is lower than System B (3.5). Figure 4 shows
the Word Error Rate (WER) of all systems in the SUS test-
ing. System O got a mean error of 0.26, which is higher
than System B (0.19), C (0.18) and D (0.16). The results
demonstrate that our system performs worse than System
B, although both of them are unit-selection methods. Our
system outperforms System D in terms of naturalness and
similarity, while got higher WER than it. That may be



Figure 3: Mean Opinion Scores for similarity to the orig-
inal speaker given by paid listeners.
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Figure 4: Word Error Rate (WER) in the SUS testing.

L M Q B F H O E D G J K P I C N

0
5

10
15

20
25

30
35

40
45

50

207 208 206 207 208 202 207 207 208 207 206 206 204 206 207 198n

Word Error Rate − paid listeners in Edinburgh lab (SUS data)

System

W
E

R
 (

%
)

the reason that we got lower MOS than D for audiobook
paragraphs, because the listeners sometimes cannot hear
the speech clearly.

5. Conclusion
In this paper, a speech synthesis system has been built to
read audiobooks for children. A hybrid method has been
employed, which is a trajectory tiling method guided by a

DNN network. The experiments demonstrated that in the
duration prediction, the context information in the input
vectors will improve the system performance even though
the LSTM network has considered the context informa-
tion. However, the context information did not help much
in acoustic modelling. According to the subjective evalu-
ation results, there is still much room for improvement of
our method.
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