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Abstract

In the present paper, hidden Markov model (HMM) based
speech synthesis system developed in Nagoya Institute of Tech-
nology (Nitech-HTS) for a competition of text-to-speech syn-
thesis systems using the same speech databases, named Blizzard
Challenge 2005, is described. We show an overview of the ba-
sic HMM-based speech synthesis system and then recent devel-
opments to the latest one such as STRAIGHT-based vocoding,
hidden semi-Markov model (HSMM) based acoustic modeling,
and parameter generation considering global variance are illus-
trated. Constructed voices can synthesize speech around 0.3
xRT (real time ratio) and their footprints are less than 2 MB.
The listening test results show that performances of our systems
are much better than we expected.

1. Introduction
In recent years, we have developed a kind of corpus-based
speech synthesis system based on hidden Markov models
(HMMs) [1]. In this system, spectral and excitation parameters
are extracted from speech database and modeled by context-
dependent HMMs. In the synthesis part, spectral and excitation
parameters are generated from HMMs themselves [2]. By fil-
tering the excitation, a synthesis filter controlled by the spectral
parameters outputs speech waveform. This system has the fol-
lowing features:

1) smooth and natural sounding speech can be synthesized,

2) the voice characteristics can be changed,

3) it is “trainable.”

As for 1), by taking account of statistics of both static and dy-
namic features, the dynamics of the generated speech parameter
sequence are constrained to be realistic. As for 2), by trans-
forming HMM parameters appropriately, voice characteristics
of synthesized speech can be changed since this system gener-
ates speech from the HMMs themselves. As for 3), this system
can be automatically constructed.

In January 2005, Black and Tokuda conducted a competi-
tion of text-to-speech synthesis systems using the same speech
databases, named Blizzard Challenge 2005. In the present pa-
per, we describe technical details, building processes, and con-
structed voices of the latest HMM-based speech synthesis sys-
tem developed in Nagoya Institute of Technology (Nitech-HTS)
for the Blizzard Challenge 2005.

One of the limitations of the basic system is that synthe-
sized speech is “buzzy” since it is based on a vocoding tech-
nique. To alleviate this problem, a high quality vocoder called
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1: An overview of the basic HMM-based speech synthe-
tem.

IGHT [3] is introduced. Other techniques such as hidden
Markov model based acoustic modeling [4] and parame-
neration considering global variance [5], which have been
d to improve the basic system, are also integrated.
he rest of the present paper organized as follows. First a
overview of the basic HMM-based speech synthesis sys-

given. This is followed by the new features integrated
latest system and then by the details of our systems con-

ed for the Blizzard Challenge 2005. Finally concluding
ks are presented.

2. Basic system
1 illustrates an overview of the basic HMM-based speech
sis system [1]. In this system, feature vector consists
ctrum and F0 parts. The spectrum part consists of mel-
al coefficients, their delta and delta-delta and F0 part con-
f log F0, its delta and delta-delta.

the training part, feature vector sequences are mod-
y context-dependent HMMs. Training procedure of the
t-dependent HMMs is almost the same as that in speech

nition systems. The main differences are that not only
tic contexts but also linguistic and prosodic ones are taken
ccount and state duration probabilities are explicitly mod-
y single Gaussian distributions.
the synthesis stage, first a given text to be synthesized is

rted to a context-dependent label sequence and a sentence
is constructed by concatenating the context-dependent



HMMs according to the label sequence. Secondly, state dura-
tions maximizing their probabilities were determined. Thirdly,
mel-cepstral coefficients and log F0 sequences maximizing their
output probabilities for a given state sequence are generated
by speech parameter generation algorithm (case 1 in [2]). Fi-
nally, speech waveform is synthesized directly from the gener-
ated mel-cepstral coefficients and log F0 sequences using Mel
Log Spectrum Approximation (MLSA) filter.

3. New features
3.1. STRAIGHT vocoding

As a high-quality speech vocoding method, we employ
STRAIGHT (Speech Transformation and Representation us-
ing Adaptive Interpolation of weiGHTed spectrum), which is
a vocoder type algorithm proposed by Kawahara et al. [3]. It
consists of three main components, i.e., F0 extraction, spectral
and aperiodic analysis, and speech synthesis.

The STRAIGHT automatically extracts F0 with fixed-point
analysis [6]. We employ a two-stage extraction to alleviate er-
rors of the F0 extraction, e.g., halving and doubling. Firstly,
we perform the F0 extraction for all of training data for each
speaker under the condition in which a range to search is set to
40-600 Hz. Taking account of a histogram of the extracted F0,
we roughly estimate an F0 range of each speaker. Then, F0 is
again extracted in the speaker-specific range.

Using the extracted F0, the STRAIGHT performs pitch-
adaptive spectral analysis combined with a surface reconstruc-
tion method in the time-frequency region to remove signal pe-
riodicity. As a spectral parameter, we use the 0th through 39th
mel-cepstral coefficients to which the smoothed spectrum an-
alyzed by the STRAIGHT is converted with a recursive filter.
An aperiodicity measure on the frequency domain based on a
ratio between the lower and upper smoothed spectral envelopes
to represent the relative energy distribution of aperiodic com-
ponents [7] is also extracted. As a parameter for constructing
mixed excitation source in speech synthesis, average values of
the aperiodicity measures on five frequency bands, i.e., 0-1 kHz,
1-2 kHz, 2-4 kHz, 4-6 kHz and 6-8 kHz are used.

The STRAIGHT designs the mixed excitation as the
weighted sum of a pulse train with phase manipulation and
Gaussian noise. The weighting process is performed in the fre-
quency domain using the aperiodic measures. It is required to
convert the mel-cepstrum to the linear-scaled spectrum since the
STRAIGHT employs an FFT-based processing for synthesizing
a speech waveform. However it increases computational com-
plexity. To reduce computational cost, we apply MLSA filter
to the STRAIGHT synthesis. Specifically, we generate one-
pitch waveforms from mel-cepstral coefficients and the mixed-
excitation with the MLSA filter, and then a synthetic waveform
is generated with PSOLA.

3.2. Hidden semi-Markov model

In the HMM-based speech synthesis system, rhythm and tempo
are controlled by the state duration probabilities modeled by
the single Gaussian distributions. They are estimated from sta-
tistical variables obtained in the last iteration of the forward-
backward algorithm, and then clustered by a decision tree-based
context clustering algorithm: they are not reestimated in the
Baum-Welch iteration. In the synthesis stage, we construct a
sentence HMM and determine the state durations maximizing
their probabilities. Then a speech parameter vector sequence is
generated. However, there is an inconsistency: although param-
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of HMMs are reestimated without explicit state duration
bility distributions, speech parameter vector sequence is
ated from the HMMs with explicit state duration probabil-
tributions. This inconsistency might degrade the quality
puts.

o resolve the discrepancy, we have introduced hidden
Markov model, which can be viewed as the HMMs with
plicit state duration probability distributions, into training
f this system [4]. It makes possible to reestimate state out-
d duration probability distributions simultaneously. Im-

ments in not only duration but also spectrum and F0 in the
tic speech have been reported [4].

arameter generation considering global variance

ly, speech parameter vector sequences generated from
MMs are smoothed excessively. Synthesized speech us-
er-smoothed parameters sounds muffled. To reduce this

, we use a parameter generation algorithm considering
l variance (GV) of the generated parameters [5].

e apply that algorithm to both spectral and F0 parameter
ation processes [5]. One GV is calculated from a param-
equence over the entire of one utterance. Note that only

frames are used for calculating GV of F0 parameters.
bility density on GV is modeled by a Gaussian distribu-
ith a diagonal covariance matrix.

the parameter generation, we firstly generate a param-
ajectory with the speech parameter generation algorithm
1 in [2]). Then, we convert the generated trajectory so
s GV is equal to a mean of the Gaussian distribution. Us-
e converted one as an initial value, we iteratively calculate
rameter trajectory that maximizes the likelihood function
ting of the output probability of the parameter sequence
at of its GV with the Newton-Raphson method.

4. Constructing voices for Blizzard
Challenge 2005

reparing training data

e Blizzard Challenge 2005, we built 4 voices (speak-
DL, CLB, RMS, and SLT) using the CMU ARCTIC
ses. They consist of 1132 phonetically balanced utter-
for each speaker and includes speech waveforms recorded
kHz, phoneme segmentations, utterance information files,
itch marks in the Festvox style. Two databases (speak-
T and BDL) were released in advance. We used them to

re the best setting of our system, e.g., the order of mel-
al analysis, training procedure, and GV weight. When
ning 2 databases (speakers CLB and RMS) were released,
ed the system settings developed with the first 2 databases.
fore, building processes of the later 2 voices were com-
y automatic.

o prepare training data, mel-cepstral coefficients, F0, and
dicity parameters were extracted from the databases in the
escribed in Section 3.1. Feature vector consisted of spec-
F0 and aperiodicity measure parameter vectors: the spec-
arameter vector consisted of 40 mel-cepstral coefficients
ing the zeroth coefficient, their delta and delta-delta co-
nts, the F0 parameter vector consisted of log F0, its delta
elta-delta, and the aperiodicity measure parameter vector
ted of 5 average values of the aperiodicity measures and
elta and delta-delta.



Table 1: The number of distributions (leaf nodes) after decision-
tree based context clustering.

BDL CLB RMS SLT

Spectrum 882 1,013 1,021 859
F0 2,046 1,851 2,090 1,691

Aperiodicity 676 800 924 720
Duration 570 511 521 571

Table 2: Voice building time (Hours:Minutes:Seconds).
Data Acoustic model

preparation training Total

BDL 03:35:06 18:12:24 21:47:30
CLB 04:10:13 23:31:31 27:41:44
RMS 04:18:29 24:55:53 29:14:22
SLT 04:02:10 20:23:42 24:25:52

4.2. Acoustic model training

We used 5-state left-to-right HSMM structure. Each state output
probability distribution was consisted of 5 streams: mel-cepstral
coefficients with their delta and delta-delta, log F0, ∆ log F0,
∆2 log F0 and aperiodicity measures with their delta and delta-
delta. The spectrum and aperiodicity streams were modeled
by a single Gaussian distribution with diagonal covariance ma-
trix. The log F0, ∆ log F0, ∆2 log F0 streams were modeled by a
multi-space probability distribution (MSD) consisted of a single
Gaussian distribution with diagonal covariance matrix (voiced
space) and a single discrete distribution which outputs only one
symbol (unvoiced space). Each state duration probability dis-
tribution was modeled by a single Gaussian distribution whose
dimensionality was equal to the number of HSMM states.

A modified version of HMM-based speech synthesis soft-
ware toolkit [8], which was developed as a patch code for HTK,
was used to train acoustic models. After training monophone
HSMMs, they were converted to context-dependent ones. In
this work, contextual factors described in [9] were taken into
account. They were extracted from the utterance information
files included in the databases using feature extraction functions
of the Festival speech synthesis system. The context-dependent
HSMMs were reestimated (one iteration) and then a decision-
tree based context clustering technique based on an Minimum
Description Length (MDL) criterion was applied to distribu-
tions for spectrum, F0, aperiodicity, and state duration. After
reestimating clustered HSMMs (four iteration), parameter shar-
ing structure were untied. Then untied HSMMs were reesti-
mated again (one iteration). We applied the decision-tree based
context clustering again. Table 1 shows the number of distri-
butions after second context clustering. Re-clustered HSMMs
were reestimated (five iteration), and then converted to input
files for our speech synthesis engine1.

Tables 2 and 3 show total building times2 and footprints
of constructed voices, respectively. Table 3 indicates that the
footprints of constructed voices were less than 2 MB. The pdf
files include the parameter values of state output and duration
probability distributions saved in binary integer and single pre-
cision floating point number. The tree files contain the decision

1This speech synthesis engine does not include text processing part.
2Training was run on a 3.2 GHz Pentium 4 machine.
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Table 3: Footprints of constructed systems (KB).
BDL CLB RMS SLT

Pdfs 1,024 1,161 1,221 1,004
Trees 270 266 289 243

Engine 252
Others 2

Total 1,548 1,681 1,764 1,501

Conv Guten MRT News SUS

BDL

CLB

RMS

SLT

Domains

Figure 2: Real time factors for synthesizing speech.

f spectrum, F0, aperiodicity measure and duration saved
CII (HTK format). We can reduce their footprints without
ality degradation by eliminating redundant informations.
r reduction is also available with small quality degrada-

y vector quantization, saving pdf files in fixed point num-
stead of floating point one, or pruning the decision trees.

ynthesizing speech

st sentences provided by organizers consisted of five dif-
domains:

Gutenberg novels (Guten),

Standard news text (News),

Conversational/dialog sentences (Conv),

DRT/MRT phonetically confusable words, within sen-
tences (MRT),

Semantically unpredictable sentences (SUS).

ch sentence, we converted it into context-dependent label
nce using the Festival speech synthesis system. We did
ovide any tags which specifies accents, stresses or pro-

ations to help text analyzer, and outputs of text analyzer
not manually corrected. Then our engine synthesized a
h waveform according to given context-dependent label
nce.
igure 2 illustrates the real-time ratio of each system to syn-
e speech waveform for given label sequence on a 1.6 GHz
m 4 machine. This figure indicates that the constructed
can synthesize speech around 3 times faster than the real

ven on a little bit less state-of-the-art machine.
e had built 2 voices based on the basic system described

ction 2 using the databases of speakers BDL and SLT.
ared with the voices based on the basic system, quality
voices based on the latest system were totally improved.

igures 3 and 4 show average Mean Opinion Scores
s) and average Word Error Rates (WERs) of natural

h, the Nitech-HTS and the best of other participants, re-
vely. The performance of our systems was much better
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Figure 3: Average Mean Opinion Scores (MOSs) of the natural
speech, the Nitech-HTS, and the best of other participants.
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Figure 4: Average Word Error Rates (WERs) of the natural
speech, the Nitech-HTS and the best of other participants.

than we expected, though it was still far from natural speech.
These figures indicate that the Nitech-HTS achieved the high-
est MOSs and the lowest WERs in all types of listeners. Please
see [10] for the detail.

In the unit selection approach, the generated speech has a
high quality at waveform level, especially in limited domain
speech synthesis because it concatenates speech waveforms di-
rectly. Although unit selection approach sometimes gives ex-
cellent results, it sometimes gives very bad ones too. On the
other hand, in the HMM-based approach, it has a quality of
“vocoded speech” but sounds smooth and stable. Furthermore,
it has the advantages of being small and making it possible to
change voice characteristics easily by applying a speaker adap-
tation technique used in speech recognition.

In this competition, relatively small databases (around 1
hour for each speaker) were used. For such amount of data, the
HMM-based approach may be more appropriate than the unit
selection one to build voices because it can potentially cover the
given training data more effectively [11]. Hence, larger speech
databases (e.g., more than 10 hours) are usually used in state-of-
the-art unit selection systems. It would be worthy of exploring
the size of speech database where unit selection approach over-
comes HMM-based one.

Sometimes it is difficult to collect large speech database
enough to build good unit selection system. For example, Black
have indicated that recording emotional or emphasized speech
consistently has been difficult [12]. For such case, the HMM-
based approach might be very useful because it does not require
large amount of training data and can reestimate new voices
with only a few utterances from existing models trained by large
data using speaker adaptation, speaker interpolation, or eigen-
voice technique.
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5. Conclusion
present paper, hidden Markov model (HMM) based

h synthesis system developed in the Nagoya Institute of
ology (Nitech-HTS) for a competition of text-to-speech
sis systems using the same speech databases, named Bliz-
hallenge 2005, was described. We showed an overview
basic HMM-based speech synthesis system and then re-
evelopments to the latest one such as STRAIGHT-based
ing, hidden semi-Markov model (HSMM) based acous-
deling, and parameter generation considering global vari-
were illustrated. Constructed voices could synthesize
h around 0.3 xRT (real time ratio) and their footprints were
an 2 MB. The listening test results showed that perfor-
s of our systems were much better than we expected.
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