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Abstract
For the 2008 Blizzard Challenge, we used the same speaker-
adaptive approach to HMM-based speech synthesis that was
used in the HTS entry to the 2007 challenge, but an improved
system was built in which the multi-accented English average
voice model was trained on 41 hours of speech data with high-
order mel-cepstral analysis using an efficient forward-backward
algorithm for the HSMM. The listener evaluation scores for the
synthetic speech generated from this system was much better
than in 2007: the system had the equal best naturalness on the
small English data set and the equal best intelligibility on both
small and large data sets for English, and had the equal best nat-
uralness on the Mandarin data. In fact, the English system was
found to be as intelligible as human speech.
Index Terms: speech synthesis, HMM, HTS, speaker adapta-
tion

1. Introduction
Statistical parametric speech synthesis based on hidden Markov
models (HMMs) [1] has become a mainstream method of
speech synthesis because of its natural-sounding synthetic
speech and its flexibility. It has the potential to go far beyond
conventional unit-selection type methods because the speech
is generated from a parametric model, which can be modified
in various ways. Since HMM-based speech synthesis now has
history of more than 10 years, it is worth briefly summarising
the progress to date. Research on HMM-based speech syn-
thesis started with the development of algorithms for gener-
ating smooth and natural parameter trajectories from HMMs
[2]. Next, to simultaneously model the excitation parameters
of speech as well as the spectral parameters, the multi-space
probability distribution (MSD) HMM [3] was developed. To
simultaneously model the duration for the spectral and excita-
tion components of the model, the MSD hidden semi-Markov
model (MSD-HSMM) [4] was developed. These basic systems
employed a mel-cepstral vocoder with simple pulse or noise ex-
citation, resulting in synthetic speech with a “buzzy” quality.
To reduce buzziness, a more sophisticated excitation technique,
called mixed excitation was integrated into the basic system
to replace the simple pulse or noise excitation [5]. A high-
quality speech vocoding method called STRAIGHT (Speech
Transformation and Representation using Adaptive Interpola-
tion of weiGHTed spectrum) [6] was also used, in conjunction
with the mixed excitation [7]. STRAIGHT explicitly uses F0

information for removing the periodic components from the es-
timated spectrum, i.e., it interpolates missing frequency com-
ponents considering neighboring harmonic components based

on an F0 adaptive smoothing process on a time-frequency re-
gion. This enables the generation of better spectral parame-
ters and consequently more natural synthetic speech. Still, all
these basic systems had a serious shortcoming: the trajecto-
ries generated from the HMMs were excessively smooth due
to statistical processing; over-smooth spectral parameters result
in synthetic speech with a “muffled” quality which lacks the
“sharpness” or “transparency” so easily achieved by concatena-
tive methods. To alleviate this problem, a parameter generation
algorithm that considers the global variance (GV) of the tra-
jectory being generated was proposed [8]. In order to reflect
within-frame correlations and optimize all the acoustic feature
dimensions together, semi-tied covariance (STC) modeling [9]
was employed to enable the use of full-covariance Gaussians in
the HSMMs [10]. Taken together, these modest incremental im-
provements have an accumulative effect [7, 10, 11]. Compared
with early buzzy and muffled HMM-based speech synthesis, the
latest systems have a dramatically improved quality. They have
exhibited good performance in the Blizzard Challenges, which
are open evaluations of corpus-based text-to-speech (TTS) syn-
thesis systems in which both HMM-based and concatenative
systems from many different research groups have been com-
pared [12–14].

The systems mentioned above are speaker-dependent. In
parallel, we have also been developing a speaker-adaptive ap-
proach in which “average voice models” are created using data
from several speakers. The average voice models may then be
adapted using speech from a target speaker (e.g. [15]). To adapt
spectral, excitation, and duration parameters within the same
framework, an extended MLLR adaptation algorithm for the
MSD-HSMM has recently been proposed [16]. A more robust
and advanced adaptation algorithm called constrained structural
maximum a posteriori linear regression (CSMAPLR) has been
proposed [15]. We have also developed several techniques for
training the average voice model, such as a speaker-adaptive
training (SAT) algorithm [17]. To further explore the poten-
tial of HMM-based speech synthesis, for the 2007 Blizzard
Challenge we combined these advances in the speaker-adaptive
approach with our current speaker-dependent system that em-
ploys STRAIGHT, mixed excitation, HSMMs, GV, and full-
covariance modeling [18]. However, the resulting system had
two significant problems regarding the quality of the synthetic
speech and the training time of the HMMs: 1) Although it was
pleasing that the speaker-adaptive system provided good intelli-
gibility without requiring manual modifications to the database,
including speech and label files, the system had a lower natural-
ness and similarity to the original speaker than we had hoped.
2) Moreover, the training procedures for the new system were



considerably more computationally demanding than previous
systems: it took about 40 days (wall-clock time) to train the
HMMs on a total of 14 hours of speech training data, despite
using 264 cores in of a compute cluster in parallel [19]. We
analyzed the reasons for the lower-than-expected quality of the
synthetic speech in detail [18]. The answers were simple:

The order of the STRAIGHT mel-cepstral analysis
From additional listening evaluations, we confirmed that
a higher order of STRAIGHT mel-cepstral analysis can
improve the similarity of synthetic speech, when the
amount of speech data available is more than one hour
[18]. One of the reasons the 2007 system had poor sim-
ilarity scores was the use of 24-order STRAIGHT mel-
cepstral coefficients. Previous HTS systems, used for the
2005 and 2006 Blizzard Challenges, utilized 39-order
STRAIGHT mel-cepstral coefficients.

The amount of training data for the average voice model
We confirmed that there is a strong correlation between
the average scores for the naturalness of synthetic speech
generated from adapted models and the number of leaf
nodes of the decision trees constructed for the average
voice model [15]. Since the number of leaf nodes of the
decision tree increases linearly with the amount of train-
ing data for the average voice model, we can also say
that the naturalness of synthetic speech generated from
the adapted models is closely correlated with the amount
of training data for the average voice model. Using more
training data is a very simple and straightforward but
effective and reliable method for improving the quality
of synthetic speech obtained using speaker adaptation
methods. However, in the 2007 Blizzard Challenge, we
used only 6 hours of training data for the average voice
model, which resulted in the lower naturalness score.

These results imply that, by using an average voice model
trained on a much larger amount of speech data, with a higher
order of STRAIGHT mel-cepstral analysis, we can straight-
forwardly improve both the naturalness and the similarity of
the synthetic speech. In addition, the computational cost of
model training can be reduced by using an improved version of
the forward-backward algorithm for hidden semi-Markov mod-
els [20].

In the 2008 Blizzard Challenge we therefore simply used
the same speaker-adaptive approach used in 2007, but the model
was trained on more data using a more efficient algorithm and
employed a higher order cepstral analysis.

2. An Efficient Forward-Backward
Algorithm for Hidden Semi-Markov Model

Since the original HSMM-based training algorithm was com-
putationally expensive [20,21] and it was necessary to build the
systems within only one month during the Blizzard Challenge
2007, we had to simplify the training procedures for the average
voice model used in our Blizzard Challenge 2007 entry.

Subsequently, the computational cost problem has been
solved by using an efficient forward-backward algorithm for
HSMMs proposed by Yu and Kobayashi [20]. The computa-
tional complexity of the efficient algorithm isO(N(D+N)T ),
where N is the number of states used; D is the maximum state
duration; and T is the number of total frames of the obser-
vations, whereas the conventional forward-backward algorithm
requires O(N2DT ) computations [4, 22]. This makes training
time for the HSMMs much shorter [23]. Therefore, we were

Table 1: The number of leaf nodes of constructed decision trees
for each system of each English voice.

(a) Voice B (ARCTIC sentences: 1 hour)

System Mel-cepstrum log F0 Aperiodicity Duration
Benchmark 826 3,666 906 391
2008 9,107 49,269 5,138 8,593

(b) Voice A (all the sentences: 15 hours)

System Mel-cepstrum log F0 Aperiodicity Duration
Benchmark 5,833 27,137 6,790 4,045
2008 9,380 57,135 5,559 8,623

able to use HSMM-based training algorithms, including SAT,
in all stages of model training for the 2008 Blizzard Challenge.
The new efficient algorithm for HSMMs has been implemented
and released in HTS version 2.1 [24].

3. The use of UNILEX: a Multi-Accent
English Average Voice Model

As mentioned above, we found that the naturalness of syn-
thetic speech generated from the adapted model is closely corre-
lated with the amount of the training data for the average voice
model [15]. Hence, for the 2008 Blizzard Challenge, we in-
creased the amount of speech data for the average voice model
as much as possible. We used the Unilex pronunciation lex-
icon from CSTR [25], which supports all accents of English
in a unified way by deriving surface-form pronunciations from
and underlying ‘meta-lexicon’ defined in terms of key symbols.
The training data included speech from speakers with various
English accents that differed from the target speaker’s British
English RP (received pronunciation) accent. Specifically, we
utilized sets of general American English, Scottish English and
RP English speech data and built multi-accented average voice
models. Thus, the average voice model could be used as a ini-
tial model from which adaptation to any of those accents could
be performed.

The amount of speech data used for the English average
voice model totalled 41 hours and comprised data from 15
speakers (5 RP, 8 North American and 2 Scottish) uttering vari-
ous sets of texts from various domains.

The labels for the speech data were automatically generated
from word transcriptions using Festival’s Multisyn module [26].
We did not modify the labels at all. A 39-order STRAIGHT
mel-cepstral analysis, which is higher than in 2007, was used to
improve the similarity of the synthetic speech to the speech of
the original speaker.

Table 1 shows the number of leaf nodes of the constructed
decision trees of each voice. The numbers for the speaker-
adaptive system built for this Blizzard Challenge and the HTS
Benchmark system [7] are shown together. The number of leaf
nodes (which is closely related to the number of model param-
eters) for HTS 2008 is about twice that of the HTS bench-
mark system using even 15 hours of speech data. These are
the biggest average voice models which we have built to date.
Note that the training data for the average voice model includes
the appropriate set of data for the target speaker. This is why the
number of leaf nodes in the average voice model varies between



Figure 1: A GV vector contains the variance of each dimension
of the parameter trajectory sequence. v(l) is the l-th element of
the GV vector v.

Voice A and Voice B.

4. Improved GV Parameter Generation
Algorithm

In the GV parameter generation algorithm proposed by Toda et
al. [8], the objective function is manipulated by adding a penalty
term to the likelihood function of the HMM P (O | q, λ, T ) as
follows:

log P (O | q, λ, T ) + ω logN (v; θ, κ) (1)

where v ∈ RL is a GV vector containing the variance of each
dimension of the parameter trajectory sequence as shown in
Fig. 1. Then, θ ∈ RL and κ ∈ RL×L are the mean vector and
covariance matrix of the GV vectors estimated from the training
data. We set a weight for controlling the balance between these
terms, ω, to 3T , based on the number of Gaussian distributions
included in the first term. The penalty term for the GV vector is
intended to keep the variance of the generated trajectory as wide
as that of the target speaker, while maintaining an appropriate
parameter sequence in the sense of maximum likelihood [8].

This year we improved three aspects of this algorithm: 1)
Since v is a positive vector, we used a logarithmic transform
before modelling it with a Gaussian pdf; 2) We changed the
GV Gaussian pdf from a single global distribution to a context-
dependent one. In a similar way to HMM observation density
tying, decision-tree-based clustering was applied to the context-
dependent GV pdfs in order to tie their parameters. The number
of leaf nodes of the decision trees was automatically determined
by the MDL criterion. The number of leaf nodes for each fea-
ture is shown in Table 2, where we can see that Voice A (trained
on 15 hours of speech data) has 10 to 30 GV pdfs per stream.
To simplify implementation, only sentence-level contextual fea-
tures (e.g. # of phonemes in a sentence) were used at this time.
Thus, the objective function for the GV parameter generation
used for this Blizzard Challenge can be written as:

log P (O | q, λ, T ) + ω logNs(log v; θ, κ) (2)

Finally, 3) we calculated the GV vector v only from speech and
excluded silence and pause regions from the calculation, based
on automatic segmentation, in order to improve the estimation
accuracy of the GV vector. This improved GV algorithm has
also been implemented and released in HTS version 2.1.

In this parameter generation process, gradient methods are
employed for iteratively updating the generated parameter tra-
jectories. An increase of the objective function is often used as
a stopping criterion of the iterative update. When setting the

Table 2: The number of leaf nodes of constructed decision trees
for the context-dependent GV pdfs of each English voice.

System Mel-cepstrum log F0 Aperiodicity
Voice B 2 3 3
Voice A 12 33 14

stopping criterion to a small value, the generated trajectories
with the larger objective function are caused because the num-
ber of iterative updates increases. However, we found that a
chance to cause unstable sounds in synthetic speech also tends
to increase. One possibility causing this problem would be a
fact that HMM and GV pdfs are trained independently. In this
challenge, we alleviate this problem by carefully adjusting the
stopping criterion.

5. The Blizzard Challenge 2008

The Blizzard Challenge is an annual evaluation of corpus-based
speech synthesis systems, in which each participating team
builds a synthetic voice from common training data, then syn-
thesizes a set of test sentences. Listening tests are adopted to
evaluate the systems in term of naturalness, similarity to orig-
inal speaker and intelligibility. The Blizzard Challenge 2005
used the CMU-ARCTIC speech databases; in 2006, a database
consisting of five hours of speech uttered by a male speaker was
released by ATR from their ATRECSS corpus. In the Blizzard
Challenge 2007, an extended version of the 2006 corpus was
released by ATR, containing eight hours of speech data uttered
by the same male speaker. In the Blizzard Challenge 2008, an
English speech database consisting of 15 hours of speech ut-
tered by a British male speaker and a Mandarin speech database
consisting of about 6 hours of speech uttered by a Beijing fe-
male speaker were released by the Centre for Speech Technol-
ogy Research (CSTR), University of Edinburgh, UK, and the
National Laboratory of Pattern Recognition, Institute of Au-
tomation, Chinese Academy of Sciences, Beijing, China, re-
spectively.

5.1. Experimental Conditions for English Systems

We used 41 hours of speech including the released data as the
training data for the English average voice model for the full
data set. The labels for the data were automatically generated
using Unilex [25] and Festival’s Multisyn module, with no fur-
ther modification. The English phonetic, linguistic and prosodic
context factors used were similar to those in [27]. To inves-
tigate the effect of the corpus size, two systems were submit-
ted by almost all participants: one built using all the speech
data included in the released database (Voice A), and a second
built using only the ARCTIC subset (Voice B). Note that, when
building Voice B, we did not utilise the remaining data in the
full data set either to train acoustic models used for segmenta-
tion or to train the average voice model. Thus only 27 hours of
speech were used as the training data for the English average
voice model for Voice B. For Voice B, we adapted the average
voice model to the British English target speaker using only the
speech data specified for Voice B.



5.2. Experimental Conditions for Mandarin Systems

We used a Mandarin speech database consisting of six hours of
speech data uttered by six speakers, which was kindly provided
by iFlytek, as the training data for the Mandarin average voice
model. The labels for the data were automatically generated
using the iFlytek text-processing front-end modules. Mandarin
phonetic, linguistic and prosodic contexts used were the same
as those in [28]. We did not manually modify these labels. We
adapted the trained average voice model to the target speaker
using all the released speech data.

5.3. Listening Tests

English synthetic speech was generated for a set of 600 test
sentences, including 400 sentences from conversational, news
and novel genres (used to evaluate naturalness and similarity)
and 200 semantically unpredictable sentences (used to evalu-
ate intelligibility). Mandarin synthetic speech was generated
for a set of 697 test sentences, including 647 sentences from a
news genre (used to evaluate naturalness and similarity) and 50
semantically unpredictable sentences (used to evaluate intelli-
gibility). To evaluate naturalness and similarity, 5-point mean
opinion score (MOS) and comparison category rating (CCR)
tests were conducted. The scale for the MOS test was 5 for
“completely natural” and 1 for “completely unnatural”. The
scale for the CCR tests was 5 for “sounds like exactly the
same person” and 1 for “sounds like a totally different per-
son” compared to a few natural example sentences from the
reference speaker. To evaluate intelligibility, the subjects were
asked to transcribe semantically unpredictable sentences; in En-
glish tests average word error rates (WER) were calculated from
these transcripts: In Mandarin tests average character error rate
and average pinyin and tone error rate were calculated. The
evaluations were conducted over a six week period via the in-
ternet.

5.4. Experimental Results of the English Systems

Figures 2–4 show the evaluation results for English Voice A (15
hours) and Voice B (1 hour) of the 20 participating systems.
One participant did not submit speech for either English voice
and one further participant did not submit synthetic speech for
Voice B. In these figures, systems “V” corresponds to the HTS-
2008 system. “A”, “B” and “C” correspond to real speech, the
Festival “Multisyn” benchmark speech synthesis system [29]
and the HTS benchmark system [7], respectively. The Festi-
val system uses a conventional unit-selection method. The HTS
Benchmark system is a standard statistical parametric system
using speaker-dependent HMMs, which can be trained from
scratch by using HTS toolkit version 2.1 and STRAIGHT. This
system was highly rated in terms of naturalness and intelligi-
bility in the 2005 Blizzard Challenge. One of main differences
between the HTS benchmark system and the speaker-adaptive
HTS-2008 system is the use of the average voice models. We
can see several interesting findings in the results:

Naturalness (Figure 2)
Our HTS-2008 system, “J”, and system “S” are equal
best on the smaller dataset. Even on the larger dataset,
the HTS-2008 system is above average: it is statisti-
cally worse than only three systems “J”, “K”, and “S”
(p < 0.01). There is no significant difference between
the Festival benchmark system (“B”), “O”, “P” and the
HTS-2008 system. There are significant differences be-
tween real speech and all systems.
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Figure 2: Mean opinion scores of all U.K. English systems.
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Figure 3: Similarity to original speaker of all U.K. English sys-
tems.
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Figure 4: Average word error rate (%) of all U.K. English sys-
tems.

Intelligibility – word error rate, (Figure 4)
Our HTS-2008 system and “T” are equal best on the
smaller dataset. These systems are as intelligible as hu-
man speech on smaller data, i.e., there is no significant
difference in the word error rate for real speech and the
word error rates of these two systems. On the larger
dataset, the HTS-2008 system, the HTS benchmark sys-
tem and “T” are equal best. Likewise, these systems are
as intelligible as human speech. Although the Blizzard
Challenge rules allow participants to add pronunciations
for out-of-vocabulary words found in the test set to their
lexicon, we did not add them due to our limited human
resources. In fact 2% of the words in the test set are
out-of-vocabulary; it is likely that intelligibility would
be further improved if these were added to the lexicon.

Similarity (Figure 3)
On the smaller dataset, the HTS-2008 system is above
average: it is statistically worse than only one system:
“J” (p<0.01). All systems are worse than natural speech.
However on the larger dataset, the HTS-2008 system is



only average: it is statistically worse than 8 systems “B”,
“G”, “J”, “K”, “M”, “O”, “P”, and “S”. This is one of
major shortcomings of current HMM-based speech syn-
thesis.

Comparison with the HTS benchmark system
On the smaller dataset, the HTS-2008 system is signif-
icantly better than the HTS benchmark system in terms
of similarity and naturalness. On the larger dataset, there
are no significant differences between them. The HTS-
2008 system is speaker-adaptive and we can say that
these results are very good: the system has adapted to
the target speaker characteristics to the point where it is
good as a speaker-dependent system trained on a large
amount of target-speaker data.

Comparison with previous results in the 2007 Challenge
Although the basic concept of the HTS-2008 system
was the same as last year, we obtained much better re-
sults this year (see evaluation results for “Voice B” us-
ing the ARCTIC dataset in [19]). As mentioned earlier,
the system for this year was simply built under better
conditions. This result is consistent with the results for
speaker-adaptive HMM-based speech synthesis systems
reported in [15, 18].

5.5. Experimental Results of the Mandarin System

Figures 5–7 show the evaluation results of the Mandarin sub-
missions for 13 participants. Several participants submitted
only English synthetic speech and one participant submitted
only Mandarin synthetic speech. In these figures, as for English,
“A”, “C” and “V” correspond to real speech, the HTS bench-
mark system, and the HTS-2008 system, respectively. There is
no Festival benchmark system for Mandarin.

Naturalness (Figure 5)
Our HTS-2008 system, the HTS benchmark system, “F”,
“S”, “T”, and “U” are equal best. However, there are sig-
nificant differences between real speech and all systems.

Intelligibility – pinyin + tone error rate (Figure 7)
There is no significant difference between the HTS
benchmark system and systems “T” or “U”, although
HTS-2008 is significantly different from natural speech
whereas “T” and “U” are not significantly different from
natural speech. We expect that the use of larger average
voice models would improve intelligibility.

Similarity (Figure 6)
The HTS-2008 system is once again below average.

Comparison with the HTS benchmark system
The HTS-2008 system is significantly worse than the
HTS benchmark system in the terms of similarity (p<
0.01).

For the Mandarin voices, we could not collect enough speech
data for the training of the average voice model. (In addition,
we had to omit some training and adaptation procedures be-
cause of the differences of computer resources available in each
institute.) Both of these factors are thought to have lowered
the performance of HTS-2008 for Mandarin. Table 3 shows the
number of leaf nodes of the constructed decision trees of the
Mandarin systems, where we can see that the trained average
voice model was as small as the speaker-dependent model used
in the HTS benchmark system. This is not an ideal situation for
the speaker-adaptive approach, where we would normally want
to use a large average voice model as the basis for adaptation.
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Figure 7: Average pinyin and tone error rate (%) of all Mandarin
systems.

6. Conclusions
In the 2008 Blizzard Challenge, we tried the same speaker-
adaptive approach that we used in 2007, but built the systems
under better conditions. Multi-accented English average voice
models were trained on 41 hours of speech data using the effi-
cient forward-backward algorithm for HSMMs. The listeners’
evaluation scores were much better than those of HTS-2007.
For English, HTS-2008 achieved the best naturalness on the
smaller data set and the best intelligibility on both data sets.
In addition, the two English systems were found to be as intel-
ligible as human speech. Although the training condition for
the Mandarin system was far from ideal, the system was found
to sound as natural as, or more natural than, all other systems.
However, as expected, the imperfect training conditions for the
Mandarin systems produced some negative results. The syn-
thetic speech from HTS-2008 submitted for the Blizzard Chal-
lenge 2008 can be downloaded from http://homepages.
inf.ed.ac.uk/jyamagis/blizzard08.
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