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Abstract

This paper presents the version of the DRESS System that par-
ticipated in the Blizzard Challenge 2008. Here we show a basic
overview of the DRESS system, methodology and a description
of its unit selection. We present a novel concept to increase
the efficiency of the exhaustive speech unit search within the
database by an unit selection model that is based on mapping
analysis of the concatenation costs and Bayes optimal classifi-
cation (BOC).

Index Terms: speech synthesis, unit selection, join costs

1. Introduction

Recent improvements of the Dresden TTS system (DRESS)
for participating in Blizzard Challenge 2008 are described in
the present paper. DRESS is a corpus-based time-domain syn-
thesizer with pre-processing module, grapheme-phoneme con-
verter, duration control, intonation control, unit selection mod-
ule and acoustic module. It is available as a software system.
Recent improvements refer to multilingualism and naturalness.
Multilingualism is obtained by a dedicated structure that can
handle databases from different languages. Databases for Ger-
man, English, Spanisch, Czech and Chinese have been devel-
oped. Naturalness is a highly important feature of synthetic
speech. Apart from the segmental quality and the voice char-
acteristics, it depends mostly on the prosody. For this pur-
pose, DRESS was equipped with an intonation module (neural-
network based approach). Additionally, a novel unit selection
module is applied to avoid mismatches and distortions, which
degrade significantly the quality of the synthesized speech sig-
nal. Mismatches are known as concatenation cost, which could
be considered as an estimator of the quality of speech synthe-
sis. If the discordance between a speech unit and the predicted
specification is also taken into account, the quality of the syn-
thesized speech signal even suffers an extra degradation (target
cost). Therefore, it is necessary to set up all these factors in
one integrated function, which represents the influence of target
and concatenation costs on the resulting speech synthesis qual-
ity and enables the finding of optimal speech units sequences
to obtain the desired synthesized waveform. But the process-
ing of all information requires an exhaustive training to set up
the weighted coefficients for both sub-costs [1][2]. Therefore,
we present an unit selection framework based on Bayes optimal
classification (BOC) and its experimental evaluation. BOC has
a principle advantage because it does not require an exhaustive
training to set up weighted coefficients for target and concate-
nation sub-costs. It can provide an alternative for unit selection
but requires further optimization, e. g. by integrating target cost
mapping.
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Figure 1:Schematic diagram of DRESS.

2. The TTS SYSTEM DRESS
This chapter gives an overview of theDresden Speech
Synthesis System (DRESS) as shown in Figure 1:

2.1. Text processing

Fig. 1 presents the components for processing at symbolic level.
At first, the input text is split into sections. Plain ASCII-text or
text enriched with conceptual information - containing pronun-
ciation forms of some words, accent- or boundary-tags - is pro-
cessed by the pre-processor stage. Word, phrase and sentence
boundaries are classified and tagged, special character combi-
nations are recognized, function words and abbreviations are
detected and marked in the running text. The sentence bound-
ary detection determines the type of all sentences. The rules for
processing numerical formats and text anomalies like abbrevia-



tions and names are tried first, to generate a phonemic form of
the input text. On all remaining text parts, a tokenizer is applied.
By means of a special lexicon, function words are processed. If
the process was not yet successful, the abbreviation lexicon is
applied to the tokens. The phonemic rule set and afterwards the
spelling module are applied to convert the input text. Finally,
phrase boundary detection yields a finer subdivision of the sen-
tences into prosodic phrases. The Grapheme-to-Phoneme stage
derives a phonemic representation of the input text. Processing
is done first by a lexicon-based and then by a rule based com-
ponent. The construction of the phonetic rule base follows an
approach described in [3]. All phonetic rules are organized in
graphemic prefix, rule body, suffix and a phonemic result. Fur-
thermore, accent type and place are supplied to the following
prosodic components.

2.2. Prosodic modelling

Prosodic processing (duration and intonation control) is done
to the stream of phonemic information by several modules like
add segmental durations and pitch parameters .

2.2.1. Intonation model

Data Driven (Neural) Approach is utilized to generate flexible
speaking styles and to quickly adapt the DRESS system to the
requirements of different voices or languages - a data driven
approach is used. This approach includes a artificial neural net-
work (ANN) and enables the direct estimation of the f0 contour
from a sequence of linguistic input vectors. The feature cod-
ing is syllable-oriented: From the phoneme sequence, syllables
will be isolated and stepwise presented to a recurrent network.
For each syllable, a vector of N1 = 8 linguistic and phonetic
features is applied to the network input. The first hidden layer
consists of N2 = 10, the second hidden layer of N3 = 6 neurons.
The second hidden layer is completely connected to the context
neurons, i.e. the ANN input layer contains C*N1+N3=46 neu-
rons. The output layer owns N4 = 3 neurons, which estimate
the f0 contour of the focus syllable. The input encoder consid-
ers the phrase position, stress situation, phonetic features of the
nucleus and its context (see Fig. 2).

2.3. Unit Selection

The unit selection attempts to find the best combination of unit
sequences to assure that the perceptual differences between ex-
pected (natural) and synthesized speech signal are as low as pos-
sible. It transforms the stream of phonemes into a sequence of
speech units and joins it with the prosodic information. We pro-
pose a novel unit selection algorithm, which will be discussed
in more detail in the following chapters.

2.4. Acoustic synthesis

Finally, the acoustic synthesis builds up a synthetic speech
signal from the sequence of speech units and reproduces the
prosodic parameter contours. Additionally, it may apply some
prosody manipulations to fundamental frequency (f0) contour
and duration of phonemes to the speech signal. Basically, both
mechanisms behave in a contrary manner. The duration of a
phoneme is the sum of the duration of its periods, which are
obviously changing while the fundamental frequency is manip-
ulated. This implies that f0 cannot be modified independently of
the duration. That is why manipulating the prosody of a speech
signals should be an iterative process. Both frequency and du-
ration have to be shifted step-by-step to their target values [4].
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Figure 2:ANN model for intonation control DRESS.

3. Unit Selection Framework
The target and concatenation costs have been integrated in a to-
tal cost function by [1], which represents the degradation on a
synthesized speech signal. Additionally, they described an unit
selection model as a search for a low cost candidate unit se-
quence. Although, different target and concatenation sub-costs
have been proposed to unit selection, the feature sub-costs like
duration, f0, energy, linear spectral frequencies (LSFs), multi-
ple centroid analysis (MCAs) [5] and Mel frequency cepstral
coefficients (MFCCs) have already reached a significantly rep-
resentation of the deterioration of a synthesized signal. Hence,
they compose a special unit selection process in such a way that
the sum of the target and concatenation costs determines the
total costC for a sequence ofn speech units.

C(tn, un) =

n
∑
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∑
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Whereti represents the searched predicted specification,ui

the speech unit,ct
j target cost,p the number of weighted target

sub-costs,cc
j concatenation cost,q the number of concatena-

tion sub-costs andw the weighted coefficients (WCF). The fol-
lowing step should be to find those weighted coefficients that
determine the effect-weight of every target and concatenation
sub-cost in the total cost function. This is considered as the
best way to find the right speech unit sequence for the desired
synthesized speech signal. However, the search for the optimal
weighted coefficients is not a trivial task, because it normally re-
quires training, which is a subjective work and time consuming
for every speech database [1][6][7][8]. Therefore, we present a
unit selection framework that is based on mapping of the con-
catenation sub-costs and a Bayes Classifier. Therewith we avoid
principally the exhaustive and subjective search of weighted co-
efficients. Also, we estimate in great part the quality or degra-
dation of the synthesized signal by mapping the concatenation
sub-costs.
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Figure 3:Proposed Unit Selection Framework.

3.1. Bayes classification framework

The Bayes classification framework is composed by different
modules that are shown in Fig. 3. It illustrates the speech
database, where all possible speech units that compose the de-
sired synthesized speech signal are searched for. The speech
unit candidates are chosen in the speech database by Backward
Oracle Matching algorithm (BOM) [9]. It picks up all possible
speech units that compose the phonetic sequence of the text to
be synthesized. Once the speech units are found, their MCAs,
LSFs and MFCCs coefficients are calculated at the right and
left boundaries and represented in a vector form. Afterwards
the distance∆ between predecessor and candidate speech unit
sequence of the desired synthesized speech signal is calculated.
The mapping is obtained by calculating the concatenation sub-
costs distance of the speech units. Finally, the Bayes classifica-
tion determines if the concatenation between the speech units is
corrupt or proficient. In the following sections the components
of the proposed unit selection framework will be described in
more detail.

3.1.1. Parametric distance function

The Delta symbols in Fig. 3 show the distance function. They
compare two values of the same feature and produce a distance
value output. This function measures the degree of match be-
tween the features of two adjacent speech unit candidates. The
distance is calculated with 20 ms frames, 9 MCAs, 26 LSFs
and 24 MFCCs coefficients features vector in the correspond-
ing boundary at the point of concatenation. We utilize the Ma-
halanobis distance measure, because it has shown a high corre-
lation with human perception of discontinuity at concatenation
boundaries [10].

d(~x, ~y) =
√

(~x − ~y)T K−1(~x − ~y) (2)

Where~x and~y are the features vectors of the predecessor
and candidate speech units andK−1is the inverse covariance
matrix. That is how the distance between the speech units for
the MCA, LSF and MFCC features is calculated .
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Figure 4:Concatenation sub-costs mapping.

3.2. Mapping Analysis

The mapping consists of an off-line calculation of the concate-
nation sub-costs between speech units in the database, which
do and do not present displeasing distortions when they are
concatenated. It is estimated by the distance calculation be-
tween the speech unit features like MCAs, LSFs and MFCCs
at the right and left boundaries. The mapping of concatenation
sub-costs that do not present any distortion is done by the con-
catenation sub-cost distance calculation between speech units,
which are continuous in the words or sentences in the speech
database. Although, the concatenation sub-costs of continuous
speech units are set up to zero by definition [1][2], we utilize the
calculated concatenation sub-cost distances to map the real val-
ues of continuous speech units off-line. In this way, we obtain
a real reference of concatenation sub-costs without distortion.
The mapping of the concatenation sub-costs that present un-
pleasant distortions is done by using a determined set of speech
units. These speech units come from different words or sen-
tences contained in the speech database and were previously
selected to not concatenate properly. Therewith the second ref-
erence is also obtained. We were able to differentiate between
two mapped references, which represent the proficient and cor-
rupt areas of concatenation as it is shown in the Fig. 4. It illus-
trates the mapping of the concatenation sub-cost distances be-
tween continuous and not continuous speech units at the point
of concatenation. For this instance the concatenation type at the
middle of a short vowel /U/ is shown, because the concatenation
between short vowels has proven to be the most inclined case to
concatenate not properly [11][12]. Finally, a mapping for every
phoneme concatenation should be done. Consequently, the next
task is to determine the concatenation sub-cost area, which can
determine if the join between two not continuous speech units is
a proficient or corrupt concatenation based on the correspond-
ing previously mapping pro phoneme by a classification method
like BOC.

4. Bayes Optimal Classification
Bayes optimal classification establishes that the class probabil-
ity k given the feature vector~x is equal to multiplication be-
tween the a priori likelihood the classP (k) and the density
probability functionP (~x/k) divided by the probability of the
sample, according to equation (3).



P (k/~x) =
P (~x/k) · P (k)

P (~x)
(3)

Wherek is the proficient or corrupt concatenation class and
~x is the concatenation sub-cost distance vector between two
speech units. The denominator is not considered, because it
is common to both concatenation classes. A priori probabilities
of continuous and not continuous concatenation sub-costs have
been assumed equal 0.5. Also, we assumed the independence
between feature vectors, so that the BOC combines the impact
and probability of feature vector on the class label. The BOC
was modeled with a multivariate density Gaussian distribution
[13] considering that the feature vectors have a normal distribu-
tion as is showed in the following equation (4).

P (~x/k) =
1

(2π)N/2 |Kk|
1/2

(4)

· exp

[

−
1

2
(~x − ~µk)T K−1

k (~x − ~µk)

]

Where ~x is the Mahalanobis distance by concatenating
speech units, the covariance matrixK and meanµ are calcu-
lated according to the class feature vectors of the Mahalanobis
distance. Afterwards we would like to find those speech units
that have the maximum probability. It is achieved by a discrimi-
nant function as it is described in the following equation (5) and
(6) .

e = arg
i=1,...K

max di(~x) (5)

di(~x) = P (k) · P (~x/k) (6)

Where e is the maximum argument of the discriminant
function di(~x) in the equation (6), which contains the maxi-
mum probability.K is the number of classes (proficient or cor-
rupt concatenation).

4.1. Bayes discriminant function

By the substitution of the multivariate density Gaussian distri-
bution (4) the discriminant function (5), we obtain the corre-
sponding distance Bayes discriminant function (7) as it is shown
in Fig. 5. The discriminant function allows to classify a con-
catenation between two not continuous speech units into corrupt
and proficient concatenation type, which is based on its proba-
bility estimation.

d∗

k(~x) = ln
[

dk(~x)(2π)N/2
]

(7)
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Equation (7) describes a Bayes discriminant function [13],
which can be used to calculate the corresponding discriminant
function for every concatenation of phonemes of not continuous
speech units in the speech database. The Bayes discriminant
function at the point of concatenation of the nasal phoneme /N/
is shown in the Fig. 5. It illustrates 2-Dimensional mapping
analysis, where the both concatenation areas are delimited by
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Figure 5:Bayes discriminant function.

Bayes discriminant function. It is easy to recognize that some
concatenation sub-costs of not continuous speech units fall in-
side the proficient concatenation area, which is known as clas-
sification error [13].

4.2. Unit selection process

Firstly, the speech units that had been found for the desired syn-
thesized speech signal by the BOM are processed by the Bayes
Classifier. The BOC classifies the speech units in corrupt and
proficient concatenation types by using the corresponding dis-
criminant function, as it is shown in Fig. 5. Then, the speech
units, which were found to concatenate corrupt and whose con-
catenation sub-costs do not fall into the proficient concatena-
tion delimited area by the discriminant function, are removed
from the unit selection process. Afterwards, the left over speech
units are computed by the corresponding previously obtained
distribution of the proficient concatenation type by using max-
imum likelihood method. Finally, the concatenation of speech
units that shows the highest likelihood is selected. In this way,
these speech units are selected that match best with the searched
phoneme sequence to obtain the desired speech signal without
distortions by the concatenative-based speech synthesis.

5. Listening Test

The DRESS TTS system [14] was used to synthesize three
blocks of 10 utterances with three different unit selection meth-
ods. Furthermore, the previously mentioned speech database
“TC-STAR” was utilized for the three unit selection methods in
the DRESS TTS system. The first block (“Conventional US”)
was synthesized by the unit selection method proposed in [1],
which represents the basic principles of the sum of target and
concatenation costs for unit selection and requires an exhaus-
tive training to set up the weighted coefficients for target and
concatenation sub-costs. By the second block (“Masking US”)
the unit selection proposed in [15] was used, which bases its
unit selection method on previously defined transparency and
quality functions and determines if a determined concatenation
will or will not present distortions. The last block (“BOC US”)
is our proposed unit selection method.



5.1. Experiment

The synthesized utterances were evaluated by 10 listeners and
finally a mean opinion score (MOS) of their absolute category
decisions has been calculated. All listeners were students or
researchers at Dresden University of Technology with good En-
glish proficiency, experience on speech recognition and synthe-
sis. Their age varied from 20 to 30 years. The listening test con-
sisted of the evaluation of intelligibility, naturalness and con-
catenation quality of the synthesized utterances. The probands
listened to the test stimuli in random order. We asked them to
rate the quality of the synthesized utterances on a scale of 1
(Bad) to 5 (Excellent). The MOS values obtained for the three
unit selection methods are summarized in Table 1.

Table 1:Mean opinion scores.

Conventional US Masking US BOC US

2.76 2.25 2.67

5.2. Results

The mean opinion scores in Table 1 turned out to be significant
at the one percent-level by paired t-test. The masking method
of unit selection based on the masking quality function has ob-
tained the worst results in the listening test. This is due to the
quality concatenation masking function that can not be deter-
mined by a linear function for every type of concatenation as it
was proposed by [15]. The conventional unit selection method,
which is based on the sum of target and concatenations costs,
performed slightly better than BOC. It reflects the potential im-
provements that can be obtained by taken into account the target
sub-costs in the speech synthesis. Nevertheless, the task of set-
ting up the weight coefficients on the total costC function in
the equation (1) was a very difficult subjective work, which re-
quired many hours of listening training for the specific corpus
database. Summarized, the proposed BOC unit selection ob-
tained better results than the proposed masking method of unit
selection and it was slightly worse than the conventional unit se-
lection method manifesting only a small perceptive difference
between them. BOC unit selection performance is functional
since it has shown an acceptable quality and avoided many
hours of training to determine an appropriate search for the best
speech unit sequence by mapping the concatenation sub-costs,
which is mainly considered as a subjective task.

6. Conclusion
The participation at Blizzard Challenge 2008 was a great bene-
fit to the DRESS system. It gave us the opportunity to present
another perspective on unit selection methods for corpus-based
speech synthesis by proposing a Bayes optimal classifier. BOC
unit selection is based on concatenation and sub-costs mapping
of speech units representing distortions in the concatenated unit
sequence. In this method, the mapping provides two references
of proficient and corrupt concatenation areas. Furthermore, a
discriminant function as shown in the equation (7) was devel-
oped, which calculates the probability estimation of proficient
and corrupt concatenation type between two speech units by
this discriminant function. BOC unit selection provides a good
unit selection alternative with a similar or better performance
than the available unit selection methods of this TTS system.
BOC has one principle advantage because it does not require

an exhaustive training to set up the weighted coefficients for
target and concatenation sub-costs. Therefore, BOC unit selec-
tion supports the integration of new speech databases like the
database provided by Blizzard Challenge 2008 in a TTS system
avoiding exhaustive training for each newly integrated speech
database. In future, it will be important to improve the BOC unit
selection performance by the integration of target cost mapping
and to participate in the following Blizzard Challenge, because
the target cost has a great influence on the naturalness of the
synthesized speech signal.

7. References
[1] Hunt, A.J. and Black, A.W., “Unit selection in a concatenative

speech synthesis using a large speech database”, in Proc. ICASSP,
pp. 373-376, 1996.

[2] Beutnagel, M., Conkie, A. and Syrdal, A.K., “Diphone synthe-
sis using unit selection”, Proc. 3rd ESCA/COCOSDA Interna-
tional Workshop on Speech Synthesis, Jenolan Caves, pp. 185-
190, 1998.

[3] Wothke, K., MA., “Letter-to-phone rules for German”, Technical
Report 75.91.04, Feb. 1991, IBM Heidelberg Scientific Center.

[4] Hoffmann R., Jokisch, O., Hirschfeld, D., Strecha, G., Kruschke,
H., Kordon, U., “A multilingual TTS system with less than 1
megabyte footprint for embedded applications”, In Proc. Int.Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
HongKong, China, April 6-10, 2003, vol. 1, 532 - 535.

[5] Corwe, A. and Jack, MA., “Globally optimizing formant tracker
using generalized centroids”, Electronic Letters, Vol 23,No. 19,
pp 1019-1020 Beijing,China, 1987.

[6] Gamboa Rosales, H. “Evaluation of smoothing methods for
segment concatenation based speech synthesis”, In Proc 16th
Czech-German Workshop “Speech Processing”, September 77-
83, Prague, Czech Republic, pp. 270-273, 2006.

[7] Alas, F., Llor, X., Formiga, L., Sastry, K., Goldberg, D. E., “Ef-
ficient Interactive Weight Tuning For TTS Synthesis: Reducing
User Fatigue By Improving User Consistency”, In Proc. ICASSP,
Toulouse, France, pp. 865-868, 2006.

[8] Vepa, J. and King, S., “Subjective evaluation of join cost functions
used in unit selection speech synthesis”, In Proc INTERSPEECH,
Jeju Island, Korea, pp 1181-1184. 2004.

[9] Navarro, G. and Raffinot, M., “Flexible Pattern Matchingin
String”, Cambridge University Press, 2002.

[10] Vepa, J., King, S. and Taylor, P., “Objective distance measures
for spectral discontinuities in concatenative speech synthesis”, In
ICSLP, Denver, USA, 2002.

[11] Gamboa Rosales, H., Jokisch, O. and Hoffmann, R., “Spectral
distance costs for multilingual unit selection in speech synthesis”,
In Proc. of 11-th International Conference “Speech and Compute”
SPECOM2006, St. Petersburg, Russia, pp. 270-273,2006.

[12] Toda, T., Kawai, H., Tsuzaki, M., Shikano, K., “An Evaluation of
Cost Functions Sensitively Capturing Local Degradation ofNat-
uralness for Segment Selection in Concatenative Speech Synthe-
sis”, Speech Communication, Vol. 48, No. 1, pp. 45-56, Jan. 2006.

[13] Hoffmann, R., “Signalanalyse und -erkennung”, Ed.
Springer,1998.

[14] Gamboa Rosales, H. and Jokisch, O., “KorpusDress1 - Kor-
pusbasierte Konkatenative Sprachsynthesesysteme”, In Proc 18.
Konferenz Elektronische Sprachsignalverarbeitung, Cottbus, Ger-
many, pp. 115-122, 2007.

[15] Coorman G., Fackrell, J., Rutten, P. and Van Coile, B.,“Segment
selection in the LH Realspeak laboratory TTS system”, In Procof
ICSLP, pp. 2:395-398, Beijing, China, 2000.


