The CereProc Blizzard Entry 2009: Some dumb algorithms that don’t work

Matthew P. Aylett'?, Christoper J. Pidcock®

L CSTR, University of Edinburgh, UK
2CereProc Ltd, Edinburgh, UK

matthewa@cereproc.com

Abstract

Within unit selection systems there is a constant tension between
data sparsity and quality. This limits the control possible in a unit
selection system. The RP data used in Blizzard this year and last
year is expressive and spoken in a spirited manner. Last years en-
try focused on maintaining expressiveness, this year we focused on
two simple algorithms to restrain and control this prosodic varia-
tion. 1) Variable width valley floor pruning on duration and pitch
(Applied to the full database entry EH1), 2) Bulking of data with
average HTS data (Applied to small database entry EH2). Results
for both techniques were disappointing. The full database system
achieved an MOS of around 2 (compared to 4 for a similar sys-
tem attempting to emphasise variation in 2008), while the small
database entry achieved an MOS of also 2 (compared to 3 for a
similar system, but with a difference voice, entered in 2007).
Index Terms: speech synthesis, unit selection.

1. Introduction

Dumb algorithms that work well are valuable. The simpler an al-
gorithm the easier it is to understand, implement and debug. Ar-
guably, dumb algorithms that don’t work are too numerous to be
of interest. In addition care must be taken in deciding the scope of
what we mean by 'not working’. However, the Blizzard Challenge
gives us an ideal opportunity to agree on a definition of working.
A high naturalness (mean opinion score) MOS score is good, a
low (word error rate) WER, is good. We are also able to compare
systems directly with each other based on the same input data,and
same evaluation. Given the limited resources CereProc®was able
to apply to the Blizzard Challenge this year, and the desire to use
Blizzard as an opportunity to investigate new approaches to syn-
thesis, we decided to implement two simple algorithms over a short
time span. Unfortunately, the results were not successful in terms
of the results produced by the Blizzard evaluation. Within this
paper we will describe these dumb algorithms, present some addi-
tional results, and discuss the problems in implementation and the
reasons for their lack of success.

CereVoice®is a unit selection speech synthesis SDK pro-
duced by CereProc Ltd.[1], a company founded in late 2005 with a
focus on creating characterful synthesis and massively increasing
the efficiency of unit selection voice creation. CereProc enjoys a
close relationship with the Centre of Speech Technology Research
(CSTR) at Edinburgh University, and the CereVoice system is also
made available for research use. CereVoice now also includes an
HTS style implementation using STRAIGHT vocoding which al-
lows a mix and match approach across these synthesis techniques.

The data used for the 2008 and 2009 Blizzard Challenge is
prosodically rich. CereProc’s 2008 entry focused on controlling

Application Interface: e.g. Server standalone application
SAPI etc. SSML

v t %

Text Normalisation Audio Visermes
(Talking Heads etc)

A
A
Spurt XML API
h 4
Cerevoice SDK

A

TTS Voice

Figure 1: Overview of the architecture of the CereVoice synthesis
system. A key element in the architecture is the separation of text
normalisation from the selection part of the system and the use of
an XML APL.

Tuning Toolset
User Lexicons
User abreviations

and enhancing this richness in synthesis, this year’s entry focused
on controlling and removing this variation.

2. Overview of the system

CereVoice is a faster-than-real-time diphone unit selection speech
synthesis engine, available for academic and commercial use. The
core CereVoice engine is an enhanced synthesis *back end’, written
in C for portability to a variety of platforms. The engine does not
fit the classical definition of a synthesis back end, as it includes
lexicon lookup and letter-to-sound rule modules, see Fig. 1. An
XML API defines the input to the engine. The API is based on the
principle of a ’spurt’ of speech. A spurt is defined as a portion of
speech between two pauses.

To simplify the creation of applications based on CereVoice,
the core engine is wrapped in higher level languages such as
Python using Swig. For example, a simple Python/Tk GUI was
used to generate the test sentences for the Blizzard Challenge.

The CereVoice engine is agnostic about the ’front end’ used
to generate spurt XML. CereProc use a modular Python system
for text processing. Spurt generation is carried out using a greedy
incremental text normaliser. Spurts are subsequently marked up
by reduction and homograph taggers to inform the engine of the
correct lexical variant dependent on the spurt context.

In 2008 we added a parametric synthesis system based on the
HTS2005[2] and HTS2007[3] systems. Voices can be generated
using either a speaker specific approach or a voice adaptation tech-
nique. The same front end and feature extraction is used for both

systems and a voice can be switched between unit selection and
parametric synthesis on a phrase by phrase basis.

3. The Database

The English (RP) database selected for the Blizzard Challenge
contained a variety of speaking styles and acoustic properties that
allowed for more expressive speech synthesis [4] [S], but our pre-
vious voices built with this data revealed that it can also cause con-
siderable problems with inappropriate prosody and concatenation
artifacts when different parts of the database are used within the
same synthetic utterance. Last year this problem in concatenation
was found to occur frequently in stressed syllables when trying to
concatenate material from the the novel genre (Alice in Wonder-
land), with news (Herald and Post), and between emphasis data
and either of these two genres. Thus in this years entry we lim-
ited the data to a sub set of relatively homogeneous news genres
(Herald 2 and Herald 3).

The Arctic subset of the database, used for the small database
voice, is in contrast more consistent with a fairly stable speaking
style. However, results from previous Blizzard challenges have
shown it possesses insufficient phonetic and prosodic coverage for
a conventional unit selection system.

Our entry this year was severely limited by resources, with a
team of two working for two days only on implementation, testing
and evaluation. For this reason we focused on applying two simple
algorithms with the objective of tightly controlling prosodic varia-
tion in the large EH1 voice, and bulking data with HTS generated
waveforms to counter the sparsity issues in the EH2 voice.

4. Valley Floor Pre-Pruning
4.1. Introduction

Within unit selection, it is common to use an pitch (f0) target to
guide the selection of units against an idealised pitch track gen-
erated for the sentence using a prosodic model. Unlike a classic
diphone system, or a parametric system, this fO target acts as a
guideline only. Altering the target does not guarantee a change in
the output. This is because the fO target is one of many cost func-
tions used in the unit selection search. In general, f0 models in
unit selection are far from ideal, given that natural prosody resides
in the database, it is common practise to give the fO target a low
cost so that errors in the model do not cause commensurate errors
in the synthesised output.
The concept of valley floor pre-pruning is to:

1. Regard the target as a guideline only

2. Use the target to to strip away units that are far from the tar-
get before the search, without having a catastrophic impact
on the sparsity of units.

3. Pass remaining units through to the Viterbi search, al-
lowing, as with the conventional system, natural database
prosody to overcome inappropriate f0 modelling.

4.2. Implementation

FO values are calculated for all units (even if unvoiced), by in-
terpolating across the initial utterances. For each diphone type
percentile statistics are calculated giving the fO values at the 95th,
80th, 65th, 50th, 35th, 20th, and 5th percentile. During synthesis a
floor on the number of units to pass to the Viterbi search is set (in

this system 50 units). The pre-pruning takes the fO targets for each
target diphone. It then finds the percentile covering this value (or
the top or bottom percentile if the target is out of range). If a suf-
ficient number of units is present in this percentile all other units
are pruned out, otherwise the range is increased by a percentile
on each side. The range is increase until enough units are found to
pass to the Viterbi search stage. Thus if the diphone is rare all units
may be passed, if it is very common only a small number close to
the fO target will be passed.

For example take the penultimate diphone of the word “still”
/i — 1/ . In our EH1 voice we had 300 examples of this diphone.
The fO percentile statistics for the mid point of each half of this
diphone type were as follows:

Half phone /i-/ Half phone /-I/
Percentile fO Hz fO Hz
p05 96 87
p20 107 103
p35 113 120
p50 120 115
po65 126 120
p80 137 163
p95 163 156

If the fO target for the first half phone is 140Hz, this falls between
the 80th and 95th percentile. There are 45 units within this range,
which is less than the required 50. So the range is broadened to
include units above the 65th percentile and above the 95th per-
centile. On this basis the minimum f0 value that will be passed by
pre-pruning is 126Hz. On the same basis the minimum value for
the second half phone will be 120Hz. As both targets are close to
the top of the distribution no maximum limit would be set.

If the fO targets are wildly different for each half of the di-
phone, this could result in maximum and minimum values that
allowed no units to be passed. In this case the system back off
passes units irrespective of fO values.

4.3. Results

In terms of naturalness, the results were catastrophic. MOS
dropped from 4, for a similar system without this approach entered
in 2008, to 2. Intelligibility remained similar at around 35-38%
WER. Possible reasons for the sharp drop in naturalness are:

More Joins The valley floor pruning raised the total number of
non-contiguous joins in the test sentences from 50% to 58%
of possible diphone boundaries.

Effect of Inappropriate FO Target Although the overall varia-
tion in fO was reduced as intended (SD 24Hz for valley floor
voice, SD 26Hz for baseline voice. This reduction in varia-
tion was not consistent. At the start of phrases the variation
was higher for the valley floor voice (SD 29Hz) than the
baseline voice (SD 25Hz). In addition the fO mean at the
start of phrases was much higher (133Hz) than the baseline
voice (124Hz) which allowed prosody to vary more freely.
This suggests the model was requesting an overly high fO
for phrase initial contexts and the pruning was enforcing
it when possible, causing inappropriate prosody and more
joins in the synthesis.

S. Dumb HTS Merging

Taylor describes [6], and Pollet and Breen [7] demonstrate, a sys-
tem where unit selection units are merged during synthesis with
parametric style units. Thus despite phase mismatch, and poten-
tially contrasting voice qualities, it is possible to acceptably con-
catenate HTS and unit selection data. Given the primary problem
(for unit selection) in the small database entry is data sparsity, an
obvious and simple solution might be to bulk out the data using
HTS synthesis before voice building. This approach is attractive
because it requires no fundamental change to the unit selection
system. In addition, if text close to the original database is entered
we can bias the system to prefer original units, and thus produce
some output with a superior audio quality as well as with the more
natural prosodic features of a unit selection system.

This is in contrast with approaches described in [6, 7], where
generation of HTS segments is carried out at run-time, allowing
for the characteristics of surrounding conventional units to be used
during generation. As such it is a dumb algorithm, as we may
cause concatenation errors between HTS units and more serious
concatenation errors between HTS units and unit selection units
unnecessarily. However, it is extremely easy to implement. In ef-
fect any HTS system can be used to generate extra material, which
is then added to the unit selection database.

We used the CereVoice implementation of HTS to generate
the data for bulking. This parametric system used a speaker spe-
cific model very similar to the HTS2005 entry to the Blizzard
Challenge|[2], but with the addition of global variance statistics to
alter parameter generation. The feature set was also slightly dif-
ferent, very closely matching the feature set used in the CereVoice
unit selection system.

The HTS voice was built only on the Arctic subset of the
database. The text from a script created to produce good pho-
netic coverage for our larger voices was then used to generate more
speech data. This data was then added to the Arctic subset and a
new unit selection voice was created.

During synthesis, a genre feature was used to bias the selection
of data to the original data, using HTS generated units only when
data sparsity meant there were insufficient original units (less then
50).

Figure 2 shows an example of a section of speech where units
from the original database and from HTS generated speech were
concatenated together.

In one respect the dumb merged system was successful. A
similar system (although using a different database) achieved a
WER of around 40%. The mixed system in comparison managed
a much more successful WER of around 24%. However, subjects
did not appear to think it sounded natural (small voice MOS, 2007,
around 3, mixed voice MOS, 2009, around 2), perhaps feeling that
switching between the voice qualities was less natural than main-
taining a consistent parametric speech quality. In addition concate-
nation errors were still present. Thus, our mixed system offered
no advantage over a traditional HTS system - it didn’t sound more
natural, and it wasn’t more intelligible.

6. Conclusion

The concatenative synthesis approach faces two main challenges:
data sparsity, and joining non-homogeneous speech units. The al-
gorithms described in this paper attempted to address these two
issues in different ways, but did not perform well. It is difficult
to be certain what the main cause of this failure was without a

Lb o I T I . £ Y
|.lab|| usel| ht3| usel||
kHz

. | -)
: ;\ |-

l Iilln Ly

25857

-21758

. ' | ' | ' | ' 1 ' | ' | ' |
time g 2.0 2.1 2.2 B3 2.4 E.5 2.6

Figure 2: Example of speech synthesised by merging HTS output
with original data in the speech “stood still”. The /s t/ is taken
from original data, the nucleus of “stood” and onset of “still” us-
ing HTS generated data. Note also a poor concatenation in the nu-
cleus of “still” between original database units. The more clearly
repeating glottal pulses are visible in “stood” compared to the
original vowel material in “still”.

systematic analysis. It is possible that both approaches may have
performed well if implemented in a different way. However, there
are some key problems with both the valley floor pruning and the
HTS merging which may mean neither approaches will be effec-
tive without significant alterations to the algorithms.

6.1. The Problem with Pruning

Although the valley floor approach can be viewed as a soft pruning
approach, in that only units very far in terms of fO from the target
units are removed, it suffers from the same central problem of all
pre-pruning: units which may be optimal can be removed.

Given the increase in the number of joins in the synthesised
data (which will inevitably increase the probability of a concate-
nation error), this does appear to have happened in our implemen-
tation.

Although the f0 target is not strictly adhered to, it does have a
much bigger impact than in the conventional system. In our case,
poor targets at the start and end of the phrase may have decreased
the quality by choosing diphones from unusual and inappropriate
contexts.

It would be interesting to generate the fO model jointly with
the percentile statistics that are being used to select the pruning
thresholds. For example, by mapping Hertz values onto percentile
ranges and building a statistical model with this morphed data.

6.2. The Problem with Merging

Figure 2 shows that the merging algorithm we used did not ful-
fil its purpose. The vowel/liquid sequence at the end of “stood
still” shows a noticeable concatenation error. This is not surprising
given the sparsity of phrase finality and the problem of concatenat-
ing vowels with liquid contexts in a small database unit selection
system. However, it is precisely the sort of context that HTS ex-
cels at, producing smooth transitions. Why did we not use HTS
generated data in this context?

There were 89 examples of the /i-1/ diphone in the Arctic data
set. Given the HTS data is only used when the number of units
falls below 50, few HTS units are likely to have been passed by
pre-pruning. However in phrase final position there are only six
examples. Thus the system has removed HTS units in a context
where they are more likely to be required.

A second potential problem is the that the unit selection sys-
tem biases selection to contiguous contexts. This is a very sensible
approach with standard units. However the result of this is to se-
lect HT'S units in longer sequences, this in turn may make the voice
quality differences more noticeable, and potentially contributes to
the lower naturalness score.

In contrast, two problems which we may have expected to oc-
cur did not seem to emerge. There did not appear to be any specific
problems concatenating from HTS units to standard units. This is
partly due to a preference to concatenate in unvoiced regions. The
fact the HTS data was presynthesised, meaning it could not have
the dynamic coverage of a run-time system, did not seem to mean
coverage was insufficient. Both these points are supported by the
intelligibility results, which although poor compared to standard
HTS, were better than a standard unit selection small database sys-
tem.

Overall we found the process of following these simple al-
gorithms through to their conclusion in the Blizzard evaluation a
useful process. Finding out what dumb algorithms don’t work is
an important step on finding out which ones do, and how a dumb
algorithm could be made just a little bit smarter.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

7. References

Matthew P. Aylett and Christopher J. Pidcock, “The cerevoice
characterful speech synthesiser sdk,” in AISB, 2007, pp. 174—
8.

Heiga Zen and Tomoki Toda, “An overview of nitech HMM-
based speech synthesis system for the blizzard challenge
2005,” in Interspeech, 2005, pp. 93-96.

Heiga Zen, Takashi Nose, Junichi Yamagishi, Shinji Sako,
Takashi Masuko, Alan Black, and Keiichi Tokuda, “The
HMM-based speech synthesis system (HTS) version 2.0,” in
Proc. 6th ISCA Workshop on Speech Synthesis (SSW-6), Aug.
2007.

Volker Strom, Robert Clark, and Simon King, “Expressive
prosody for unit-selection speech synthesis,” in Interspeech,
Pittsburgh, U.S.A, 2006.

Volker Strom, Ani Nenkova, Robert Clark, Yolanda Vazquez-
Alvarez, Jason Brenier, Simon King, and Dan Jurafsky, “Mod-
elling prominence and emphasis improves unit-selection syn-
thesis,” in Interspeech, Antwerp, Belgium, 2007.

Paul Taylor, “Unifying unit selection and hidden markov
model speech synthesis,” in Interspeech, 2006, pp. 1758-61.

Vincent Pollet and Andrew Breen, “Synthesis by generation
and concatenation of multiform segments,” in Interspeech,
2008, pp. 1825-8.

