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Abstract
This paper describes the NICT speech synthesis system submit-
ted to the Blizzard Challenge 2009: a hidden Markov model
(HMM)-based synthesizer constructed by training trajectory
HMMs considering global variance. To improve naturalness
of the synthesized speech a mixed excitation approach based
on closed-loop residual modeling through the training of state-
dependent filters is employed. According to the official results
the system in question performs well in terms of naturalness and
intelligibility although synthesized speech does not sound very
similar to the original speaker.
Index Terms: speech synthesis, Blizzard Challenge, HMM-
based speech synthesis, trajectory HMM, residual modeling.

1. Introduction
By following recent tendency towards the development of
HMM-based speech synthesizers the National Institute of Infor-
mation and Communications technology (NICT) has submitted
a system based on the statistical parametric synthesis technol-
ogy to the Blizzard Challenge 2009 (BC2009) [1]. The system
basically corresponds to the one submitted last year jointly with
ATR [2] with two significant enhancements. The first one con-
cerns HMM modeling through the utilization of the technique
of trajectory training with embedded global variance [3]. The
second improvement consists in the use of a decision tree-based
state clustering method for state definition [4] in the excitation
modeling employed by the system [5]. According to the offi-
cial listening test results, the submitted system performs well in
terms of naturalness and intelligibility although the scores ob-
tained for similarity to the original speaker were not good.

This paper is organized as follows. Section 2 briefly out-
lines the Blizzard Challenge 2009. Section 3 describes the sub-
mitted systems. Section 4 shows the voice building procedure
while Section 5 discusses the results of the official listening test.
Finally, Section 6 shows our conclusions.

2. The Blizzard Challenge 2009
The Blizzard Challenge is an event promoted in order to bet-
ter understand and compare different techniques for building
corpus-based speech synthesizers on the same data. The chal-

lenge consists of building some voices from a released data and
synthesizing a prescribed set of test sentences, which are even-
tually evaluated through extensive listening tests by volunteers,
speech experts, and paid native speakers.

For the BC2009 [1] two databases were released:
• UK English: 15 hours of a male speaker released by The

Centre for Speech Technology Research (CSTR) at the
University of Edinburgh, UK;

• Mandarin Chinese: 6000 sentences of a female speaker
released by iFlyTek Co., Ltd, China.

For this year the required tasks were divided into hub tasks and
spoke tasks. Hub tasks for English were:

• task EH1: build a voice from the full English database
(about 15 hours);

• task EH2: build a voice from the specified ARCTIC sub-
set of the full English database (approximately 1 hour).

The spoke tasks for English in which we took part were:
• task ES2: build a voice from the full English database

suitable for synthesizing speech to be transmitted via the
telephone channel;

• task ES3: build a voice from the full English database
suitable for synthesizing the computer role in a human-
computer dialog.

We did not take part in any Mandarin Chinese task.
Rule for this year corresponded to the non-utilization of the

remainder of any database to build subset voices.

3. The submitted system
We submitted the same system for tasks EH1, ES2 and ES3,
henceforth System 1. Further, the exact same technology was
employed to construct the system submitted to task EH2, hence-
forth System 2. Thus, the only difference between System 1 and
System 2 is that the former was trained with the full database
whereas the latter employed only the ARCTIC subset.

Systems 1 and 2 are basically the same synthesizer de-
scribed in [2] (submitted by ATR/NICT last year) with two
main enhancements, namely: (1) trajectory training consider-
ing global variance [3]; (2) top-down clustering to define states
of the utilized excitation model [4]. In the next sections each of
these main improvements are treated with details.



3.1. GV-constrained trajectory training

The GV-constrained trajectory training method [3] provides a
unified framework for training and synthesis using a common
criterion considering global variance (GV) of [6]. We employ
such method for refining the state output probability densities
of conventional HMMs.

3.1.1. Observation vectors

Let us assume a D-dimensional static feature vector ci =
[ci(1) · · · ci(D)]> at frame i. We use a speech parame-
ter vector oi = [c>

i ∆c>
i ∆∆c>

i ]> consisting of not only
the static feature vector but also dynamic feature vectors ∆ci,
∆∆ci as the observation vector. The sequences of vectors oi

and ci over an utterance are written as o = [o>
1 · · · o>

T ]>

and c = [c>
1 · · · c>

T ]>, respectively. Moreover, we also use
a GV vector ν(c) = [νc(1) · · · νc(D)]> of the static feature
vector sequence c as the other observation vector, calculated by

νc(d) =
1

T

TX

i=1

(ci(d) − 〈c(d)〉)2 (1)

〈c(d)〉 =
1

T

TX

τ=1

cτ (d) (2)

3.1.2. Objective function

Given the HMM state sequence q = (q1, . . . , qT ), the HMM
parameter set λ is optimized by maximizing the following ob-
jective function Lq for the GV-constrained trajectory training,

Lq = P [c|q, λ] P [ν(c)|qλ, λν ]ωT (3)

where P [c|q, λ] is the probability density function in a tra-
jectory HMM [7], P [ν(c)|q, λ, λν ] is the probability density
function of the GV, and λν is the set of GV model parameters.
The likelihood balance between these two probability density
functions is controlled by the GV weight ω.

Definition of P [c|q, λ]: In the traditional HMMs, the
probability density function of o given an HMM state sequence
q = (q1, . . . , qT ) is written as

P [o|q, λ] = N (o; µq , Uq) =

TY

i=1

N (oi; µqi
, Uqi

) (4)

where N (·; µ, U) denotes a Gaussian distribution with a mean
vector µ and a covariance matrix U . The mean vector µq and
the covariance matrix Uq are given by

µq =
ˆ
µ>

q1
· · · µ>

qT

˜> (5)
Uq =diag

ˆ
U q1 , · · · , UqT

˜
(6)

The traditional HMM is reformulated as a trajectory HMM by
imposing an explicit relationship between static and dynamic
features, o = Wc, where W is a 3DT -by-DT window ma-
trix. The probability density function of c in the trajectory
HMM given the state sequence q is then given by

P [c|q, λ] =
1

Zq

P [o|q, λ] = N (c; cq , P q) (7)

where
cq = P qrq (8)

P
−1
q = W

>
U

−1
q W (9)

rq = W
>

U
−1
q µq (10)

Zq =

p
(2π)DT |P q |

p
(2π)3DT |Uq |

e
− 1

2

“

µ>

qU−1

q µq−r>

qP qrq

”

(11)

Note that the mean vector cq is equivalent to the ML estimate
of the static feature vector sequence generated from the HMM
by the conventional parameter generation algorithm [8].

Definition of P [ν(c)|q, λ, λν ]: The probability density of
the GV is modeled by

P [ν(c)|q, λ, λν ] = N (ν(c); ν(cq), νv) (12)
Note that the mean vector ν(cq) is defined as the GV of the
mean vector of the trajectory HMM. Hence, the GV likelihood
P [ν(c)|q, λ, λν ] works as a penalty term to make the GV of
the generated parameters close to that of the natural ones.

3.1.3. Model parameter estimation
Given the HMM state sequence q, the GV weight ω, and the
GV covariance matrix Σv , the parameter set λ including the
mean vectors and diagonal covariance matrices at all HMM
states (from 1 to S),

m =
ˆ
µ>

1 · · · µ>

S

˜> (13)

Σ
−1 =

ˆ
U−1

1 · · · U−1
S

˜> (14)
are simultaneously updated by maximizing Lq . This is done
iteratively by using the following gradients,

∂Lq

∂m
= Φ

>
q U

−1
q W (c − cq + ωP qxq) (15)

∂Lq

∂Σ−1 =
1

2
Φ

>
q on-diag

h

W (P q + cqc
>
q − cc

>)W>

−2µq(cq − c)>W
> +2ωWP qxq(µq − Wcq)>

i

(16)

where each element of a DT -dimensional vector xq is

xq =
ˆ
x>

q,1 · · · x>
q,T

˜> (17)

xq,i =
ˆ
xq,i(1) · · · xq,i(D)

˜> (18)
xq,i(d) = − 2 (cq,i(d) − 〈cq(d)〉) ·

[ν(cq) − ν(c)]> pν(d) (19)

The d-th column of Σ−1
ν is pν(d). The matrix Φq is a 3DT ×

3DN matrix whose elements are 0 or 1 determined according
to the state sequence q. The notation on-diag[·] denotes the
extraction of only diagonal elements from a square matrix.

Although a single observation sequence is assumed (i.e., a
single utterance) to simplify explanations, multiple observation
sequences are actually used in the training process.

3.1.4. Parameter generation
The objective function Lq is also used for parameter genera-
tion. Given the HMM state sequence q, the ML estimate of the
static feature vector sequence determined by maximizing Lq is
given by cq . Therefore, the generated trajectory is analytically
calculated by (8) even if we consider the GV in the parameter
generation process. This is because the GV-constrained trajec-
tory training optimizes the HMM parameters so that the GV of
the generated trajectory is close to the natural one.
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Figure 1: Training part of the excitation model utilized by the
NICT system.

3.2. Tree-based state definition for excitation modeling
Figure 1 depicts the training part of the excitation model de-
scribed in [5], which is applied to our system. Filters

Hv(z) =

M/2
X

l=−M/2

h(l)z−l (20)

Hu(z) =
K

1 −
PL

l=1 g(l)z−l
(21)

vary according to each HMM state and their coefficients are op-
timized using a residual signal ML criterion [5]. The excitation
training process can be enumerated through the following steps:
(1) state definition; (2) residual segment classification according
to the defined states; (3) iterative filter calculation for each clus-
ter of residual segments using the procedure described in [5].
Our improvement on excitation modeling concerns an analytic
method to define states in Step 1.

3.2.1. Clustering criterion: residual ML
Assuming that the noise sequence w(n) which is output by filter
G(z) in Figure 1 is a Gaussian process, the log likelihood of the
signal u(n), also a Gaussian process, is given by

log P [u|Hu] = −
N

2
log 2π +

1

2
log |G>

G| −
1

2
u
>
G

>
Gu

(22)
where N is the number of samples of the entire database and

u =
ˆ
u(0) · · · u(N − 1)

˜> (23)
G =

ˆ
g̃(0) · · · g̃(N−1)

˜
(24)

g̃
(m) =

»
0 · · · 0
| {z }

m terms

1
K

g(1)
K

· · · g(L−1)
K

0 · · · 0
| {z }

N−m−1 terms

–>

(25)

The second term in the right side of (22) can be written as

1

2
log |G>

G| =
1

2

N−1X

n=0

log

˛
˛
˛
˛
˛
1 −

LX

l=1

g(l)ejwnl

˛
˛
˛
˛
˛

2

− N log K

(26)
and because G(z) is minimum-phase, the first term in the right
side of (26) is zero [9]. Further, if w(n) is a white noise se-
quence with variance one and mean zero, the third term in the
right side of (22) can be approximated as follows

u
>
G

>
Gu = K

2
NE{w2(n)} ≈ K

2
N (27)

Therefore, the likelihood of e(n) given the excitation model is
simply a function of the unvoiced filter gain component K,

log P [e|Hv,Hu, t] = −
N

2
log 2π − N

„

log K +
K2

2

«

(28)

3.2.2. Clustering procedure
By taking into account the state-dependency of the filter coeffi-
cients, (28) can be re-written as

log P [e|Hv,Hu, t] = −
N

2
log 2π +

SX

j=1

Lj (29)

where
Lj = −Nj

„

log Kj +
K2

j

2

«

(30)

is the likelihood of e(n) under state sj , Nj is its correspond-
ing number of samples, Kj is the corresponding unvoiced filter
gain, and S is the number of states (or clusters for tied states).

From Figure 1, initially voiced filter coefficients are com-
puted, followed by the determination of u(n), finally leading to
gain component Ksj

. The process of splitting one cluster into
two thus can be sketched as follows:

1. split sj into sj1 and sj2 given a candidate question;
2. calculate voiced filter coefficients, hsj1

and hsj2
, for the

new clusters sj1 and sj1 , respectively;
3. compute unvoiced filter coefficients with corresponding

gain components, gj1 , Kj1 , gj2 , and Kj2 , respectively
for sj1 and sj2 .

After calculating Lj1 and Lj2 from Kj1 and Kj2 , respectively,
according to (30), likelihood increment due to the split can be
measured by

Linc = Lafter − Lbefore = Lj1 + Lj2 − Lsj
(31)

3.2.3. Approximations to decrease computational complexity
The determination of voiced filters and unvoiced filter gain com-
ponents for sjx implies optimization of filter coefficients and
pulse trains for the new clusters, according to the algorithm de-
scribed in [5]. In order to decrease computational complexity
this iterative optimization is replaced by single calculation of
voiced filters followed by linear prediction analysis of the un-
voiced excitation signal u(n) under segments belonging to sjx

to derive the gain component Kjx .
Assuming the diagram of Figure 1, voiced filter coefficients

for cluster sjx can be obtained by least squares,

hjx =

0

@
X

i∈sjx

A
>
i Ai

1

A

−1
X

i∈sjx

A
>
i ei (32)

where
Ai =

h

t̃
(0)
i · · · t̃

(M)
i

i

(33)

t̃
(m)
i =

»
0 · · · 0
| {z }

m terms

ti(0) · · · ti(Ni−1) 0 · · · 0
| {z }

M−m terms

–>

(34)

ei =

"
0 · · · 0
| {z }

M
2

terms

ei(0) · · · ei(Ni−1) 0 · · · 0
| {z }

M
2

terms

#>

(35)

with ti(n) and ei(n) being respectively pulse train and residual
segments with Ni samples belonging to cluster sjx . Segments
are obtained according to alignment performed at the HMM
state level. After that, the gain Kjx is calculated from

Kjx =

v
u
u
trjx(0) −

LX

l=1

gjx(l)rjx(l) (36)



with

rjx(l) =
X

i∈sjx

Ni−1
X

n=0

ui(n)ui(n − l), l = 0, . . . , L (37)

being the sum of autocorrelation sequences of all segments of
ui(n) = ei(n)− hjx(n) ∗ ti(n), where i ∈ sjx . The unvoiced
filter coefficients of cluster sjx , {gjx(1), . . . , gjx(L)}, are de-
termined from rjx(l) using Levinson-Durbin [9].

3.2.4. Stop criterion
The minimum description length (MDL) [10] is utilized as stop
criterion. Let the description length of excitation model Γi with
cluster set {s1, . . . , sSi

}, where Si is the number of clusters,
where each of them has a voiced and unvoiced filter, be

`i =
N

2
log 2π −

SiX

j=1

Lsj
+

(M + L + 2)Si

2
log N (38)

The first and second terms in the right side of (38) correspond
to the likelihood of Γi whereas the third term measures its com-
plexity [10]. The difference of description length between the
model after the split Γi+1, and the model before the split Γi is

∆` = `i+1 − `i = −Linc +
M + L + 2

2
log N (39)

The clustering process is stopped if ∆` > 0.

4. Building voices for the BC2009
4.1. Database segmentation and labeling
We utilized the same labels constructed for the system submit-
ted last year. Thus, procedure for segmentation and full context
label construction can be seen in [2].

4.2. Speech parameter extraction
Speech parameters modeled by HMM consisted of log F0 and
spectral parameter vectors, extracted from the database at every
5 ms. We extracted F0 using the Snack Sound Toolkit [11].

Spectral parameters were also extracted at every 5 ms. Pe-
riodograms, represented by power density spectrum extracted
using STRAIGHT [12], were derived from each 5-ms frames,
from which eventually two kinds of coefficients were extracted:
(1) mel-cepstral coefficients as described in [13]; (2) mel-
generalized cepstral coefficients as described in [14]. We
trained two different systems by utilizing the full database
and ARCTIC subset using coefficients (1) and (2), hence-
forth System-MCEP and System-MGC, respectively, in order to
choose the best one to submit to the BC2009. The number of
coefficients extracted from each frame, for both systems, was
40 (including the 0-th coefficient). For System-MGC, before
HMM modeling mel-generalized coefficients were changed into
the line spectral pair domain (MGC-LSP), as described in [14].
After an informal listening test performed with 8 speech syn-
thesis expert listeners and 1 speech expert we decided to submit
System-MCEP, i.e., we chose mel-cepstral coefficients derived
from STRAIGHT spectrum for spectral parameterization.

4.3. Synthesizer training
Initially, hidden semi-Markov models (HSMMs) were trained
using multi-stream observation vectors composed of mel-
cepstral coefficients and F0, with their corresponding deltas and

Table 1: Log-scaled trajectory likelihood (Traj) given by (7),
GV likelihood (GV) given by (12), and GV-constrained trajec-
tory likelihood (Traj + GV) given by (3) (when ω = 1.0) of each
model. These likelihoods are normalized by dividing the total
likelihoods by the number of dimensions of the static feature
vector and the number of frames.

a) System 1 (submitted to tasks EH1, ES2 and ES3)
Likelihoods for mel-cepstrum Traj GV Traj + GV
Standard HMM 0.81 -7.44 -6.63
Trajectory HMM 1.24 -7.34 -6.10
GV-Trajectory HMM 1.19 4.32 5.51
Likelihoods for log F0 Traj GV Traj + GV
Standard HMM 0.78 0.75 1.53
Trajectory HMM 0.94 0.79 1.73
GV-Trajectory HMM 0.94 0.87 1.81

b) System 2 (submitted to task EH2)
Likelihoods for mel-cepstrum Traj GV Traj + GV
Standard HMM 0.81 -13.11 -12.30
Trajectory HMM 1.25 -12.93 -11.68
GV-Trajectory HMM 1.19 4.56 5.75
Likelihoods for log F0 Traj GV Traj + GV
Standard HMM 0.84 0.91 1.75
Trajectory HMM 1.00 1.09 2.09
GV-trajectory HMM 0.99 1.26 2.25

delta-deltas, using the same conditions as the ones described
in [2]. The trained HSMMs were then approximated by HMMs
by copying their state output probability densities followed by
transition probability training. After that, sub-optimum HMM
state sequences for each training utterance were determined by
Viterbi alignment. Based on the determined state sequences,
HMM parameters were optimized by GV-constrained trajectory
training conducted as follows. First, HMM parameters were
updated by maximizing solely the trajectory likelihood, i.e., by
setting the GV weight ω in (3) to zero. This optimization pro-
cess is equivalent to the standard trajectory training [7]. After
that, HMM parameters were further updated by setting ω to a
proper value (ω = 0.5 for our system). The diagonal covariance
matrix Σν of the GV probability density function was trained
from the GV vectors of all training utterances. Note that HMM
state sequences were not updated.

To verify the effect of GV-constrained trajectory training,
we checked the log-scaled trajectory, GV, and GV-constrained
trajectory likelihoods for mel-cepstrum and log-scaled F0 in the
training data, respectively, as described in [3]. Table 1 shows
reasonable results for both mel-cepstrum and F0 components,
from which it can be inferred that: (1) trajectory training yields
significant improvements in the trajectory likelihoods; (2) GV-
constrained trajectory training yields dramatic improvements in
the GV likelihoods while not causing significant reductions to
the trajectory likelihoods.

4.4. Excitation training
Residual signals were derived from the speech database by in-
verse filtering using the mel-cepstral coefficients of [13], ex-
tracted from speech at every 5 ms. Full context models were
used to segment the residual signals at the HMM state level.
Pulse trains were derived from pitch marks and eventually op-
timized for the residual segments through the procedure de-
scribed in [5]. Residual segments were then clustered using
the procedure described in Section 3.2. The MDL criterion as



Table 2: Number of terminal nodes at the end of the clustering
process for the system submitted to tasks EH1, ES2 and ES3
(System 1), and system submitted to task EH2 (System 2). Num-
ber of logical models is 362515 and 38490, respectively.

HMM state S1 S2 S3 S4 S5 Total
System 1 51 51 48 51 10 211
System 2 19 31 32 30 23 135
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Figure 2: Linc for each split iteration for HMM states S1 to S4.
Top: system submitted to tasks EH1, ES2 and ES3 (System 1).
Bottom: system submitted to task EH2 (System 2).

shown in Section 3.2.4 was used to stop tree growth. In order to
assure that training of the full database voice would be finished
on time, only pentaphone and silence related questions were
utilized for the clustering process. Once states were defined as
terminal nodes of the obtained decision trees, voiced and un-
voiced filters for excitation models of System 1 and System 2
were calculated using the procedure described in [5].

Figure 2 shows the evolution of Linc given by (31) for
HMM state positions {S1, . . . , S4} at each split step, for sys-
tems 1 and 2. It can be seen that Linc decreases as trees grows,
although some outliers occur, probably due to the clustering ap-
proximations of Section 3.2.3. Table 2 shows the number of
terminal nodes at the end of the process.

Figure 3 shows 3-D plots of impulse responses of Hv(z) of
the achieved excitation models, and excitation models trained
by the conventional phonetic decision trees approach, used
in [2]. It can be noticed that filters of System 1 obtained through
the proposed algorithm achieve convergence more than the con-
ventional method. This shows that the clustering was successful
in grouping similar residual segments under the same cluster.
However, the same result was not achieved for System 2.

5. System performance
The BC2009 evaluated the submitted systems under three
main categories: (1) naturalness; (2) similarity to the original
speaker; and (3) word error rate of semantically incorrect sen-
tences [15]. Aside from those, a new criterion was created to
evaluate task ES3, which corresponded to an appropriateness
degree of the synthesized speech as answers to some specified
questions in a conversational domain.

5.1. Listening test results
All the box plots shown in this section represent the opinions
of English native speakers paid to conduct the listening tests.
Figure 4 shows naturalness scores for the systems submitted
to tasks EH1 and EH2, whereas Figure 5 shows the scores of
appropriateness of the synthesized speech for the systems sub-
mitted to task ES3. It can be seen that the results were reason-
ably good for System 1, submitted to EH1 and ES3, whereas
System 2 did not achieve the expected naturalness score in task

A S K I BL H C O J D E R Q P W M T

1
2

3
4

5

System

NICT

S
c
o
re

A S K I B L H C O J D E R Q P W M T U

1
2

3
4

5

System

S
c
o
re NICT

Figure 4: Naturalness scores according to paid native speakers
for systems submitted to tasks EH1 (top) and EH2 (bottom).

EH2. Figure 6 shows the degrees of similarity to the original
speaker for tasks EH1 and EH2, where it can be noticed that
our systems performed below average. Figure 7 shows WER
for system submitted to tasks EH1 and EH2. The NICT system
achieves the best performance for task EH1 whereas the result
for task EH2 was surprisingly below what we expected.
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Figure 5: Appropriateness of the speech synthesized by systems
submitted to task ES3 as answers to some specified questions,
according to paid native speakers.

5.2. Discussion on the performance
In average, according to the official results, System 1 (full
database) performed better than System 2 (ARCTIC subset).
This fact did not happen for the system we submitted last
year [2], which achieved similar performance despite the dif-
ference in data size. Perhaps our top-down clustering approach
for filter state definition worked better for System 1 due to its
greater amount of training data. This can be inferred from Fig-
ure 3 where the improvement for System 1 is more evident than
the improvement obtained for System 2, when compared with
the baseline method for state definition. Lastly, we faced some
problems to synthesize some test sentences using the released
Festival utterance files. Maybe it would have been more appro-
priate to generate full context labels directly from text.



Figure 3: Impulse responses of voiced filters Hv(z) derived using state configurations yielded by the proposed residual clustering
algorithm and by the baseline phonetic trees method. Respectively from left to right, filters calculated using: full database and
proposed algorithm, full database and phonetic trees, ARCTIC subset and proposed algorithm, and ARCTIC subset and phonetic trees.
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Figure 6: Similarity scores according to paid native speakers
for systems submitted to tasks EH1 (top) and EH2 (bottom).

6. Conclusion
This paper described the NICT entry for the Blizzard Challenge
2009. According to the results, the system achieved fair results
in terms of naturalness, similarity and intelligibility. The differ-
ence in performance for tasks EH1 and EH2 was considerable.
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