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Abstract 
In this paper we describe the voices we submitted to the 2009 
Blizzard Challenge, a yearly challenge to evaluate auditory 
speech synthesis on common data. Since it is the second time 
we participate in this challenge, in this paper we focus on the 
changes we made to our unit selection-based system. The 
weighted sum of symbolic target costs has been replaced by a 
single statistical target cost; the weighted sum of acoustic join 
cost has been replaced by a single statistical join cost. Both 
these costs are based on context-clustering decision tree 
modeling, and trained on the speech database. Furthermore, 
the voice building process has been enhanced by improving 
the segmentation quality and by automatically removing 
potentially “bad” units.  

 
Index Terms: speech synthesis, unit selection, statistical 
selection costs 

1. Introduction 
In 2008, the VUB team and its DSSP synthesizer [1] 
participated for the first time in the Blizzard Challenge [2], a 
yearly speech synthesis challenge to evaluate synthesizers and 
advancing the technology. This paper presents an overview of 
the VUB 2009 entry, with emphasis on changes and 
improvements to the system. We built the two UK English 
voices EH1 and EH2 from the databases provided with the 
Blizzard Challenge; the former being the full speech database, 
and the latter being the Arctic subset of that database. The 
same UK English database was provided as in the previous 
edition of the challenge (“Roger”).  

2. DSSP Synthesizer 
The DSSP synthesizer is a flexible and modular unit selection 
synthesizer [1]. Like any unit selection synthesizer, the 
synthesizer consists of two parts: a language-dependent front-
end providing natural language processing, and a language-
independent back-end providing unit selection. The system 
supports Dutch, UK English and US English. It has also been 
extended to synthesize speech audio-visually [3].  

2.1. Voice-building 
As one of the goals of the DSSP synthesizer is to build voices 
with the least human intervention as possible, the construction 
of a new voice for the DSSP synthesizer is mostly automated.  

Before building a voice, the recordings for the new voice 
need to be segmented and labeled. An orthographic 
transcription of each of the recorded utterances must be 
available. Based on these transcriptions and a lexicon, input 
files for the segmentation algorithm are created automatically. 
Utterances which contain out-of-vocabulary words are 
discarded in order to avoid potential errors caused by the 
grapheme-to-phoneme conversion and syllabification 
algorithm. Accurate syllabification is important because our 

synthesizer is able to use syllables as targets. As the provided 
UK English database did not contain many such words, we 
were able to use almost all of the supplied utterances. 

As in most other unit selection synthesizers, acoustic 
features needed for computing join costs, such as MFCC and 
f0, are extracted offline and stored beforehand. Based on the 
orthographic transcription of each utterance, the front-end 
generates symbolic information, which is used to calculate the 
target cost(s). Each segment (i.e. each phoneme) of the 
database is labeled as such. 

Finally, the models for our new target and join costs need 
to be build as explained in the following sections.  

2.1.1. Segmentation 

We used the open-source speech recognition toolkit SPRAAK 
[4] to segment and label the utterances. SPRAAK contains a 
HMM forced-aligner and tools to create various types of 
HMM acoustic models. Last year we have used the EHMM 
forced aligner, part of the FestVox toolset [5]. SPRAAK has 
the advantages that it can train acoustic models faster than 
EHMM with identical settings, and provides more options 
such as context-dependent modeling, pronunciation variation, 
etc. Note that the segmentation generated for last year’s 
Blizzard Challenge was still used to bootstrap the training of 
the acoustic models. Provided that a basic acoustic model is 
available, an initial segmentation could also be generated 
automatically. However, at the time of building the Blizzard 
voices, we did not have a model for male UK English speech. 
Separate acoustic models were trained for each of the voices 
EH1 and EH2, and used to label and segment the 
corresponding speech data. 

We performed experiments by changing the settings of 
SPRAAK and inspecting the quality of the generated 
segmentation and the quality of the synthesis using these new 
segmentations. The best results were obtained using some of 
the more basic settings which did not make use of context-
dependent models or any pronunciation variation. A standard 
3-state left-to-right context-independent phone model was 
used, with no skip states. Speech was divided into 25 ms 
frames with 5 ms frame-shift. For each frame, 12 MFCC’s and 
their first and second order derivatives were extracted. The 
UK English speech database is relatively small compared to 
databases typically used to train models for speech recognition 
(especially the Arctic subset). This can explain why simple 
models actually worked better.  

2.1.2. Pruning Outliers 

Some of the units in the speech database do not contribute well 
to the synthesis quality; these could be considered to be 
“outliers”. Removing or penalizing the use these units, usually 
results in a higher synthesis quality. These units are typically 
the result of errors in the segmentation, a mispronunciation of 
the speaker or a mismatch between predicted and realized 
symbolic features (e.g. lexical stress). Manually inspecting 
each of the utterances in the speech database is a time-



consuming task. Furthermore, since our system does not 
describe the target prosody in terms of acoustic parameters, it 
is actually more sensitive to those outliers. An automatic 
algorithm to identify and remove these units from the 
database, is thus required to automate the voice-building 
process as much as possible. Our approach is to prune those 
units which “differ too much” from the other units that belong 
to the same phonetic class. Besides eliminating the outlier, the 
idea is that units that are similar to other units in the database, 
can generally by used in more different cases.  

A measure that quantifies how much a particular unit 
differs from the other units can be calculated as the average 
acoustic distance of that unit to other units. The speech 
database is analyzed for each type of phoneme separately, 
ignoring "silence" phonemes. Let units u0, ... , uN-1 be N 
phones found in the database sharing the same phonemic 
identity (i.e. representing the same phoneme). Let cij be an 
acoustic distance between units ui and uj. In our system, this 
distance takes spectrum, duration, energy and pitch into 
account. The acoustic distance is calculated as follows. 
Dynamic time-warping is applied to time-align units ui and uj.. 
Let P be the size of the resulting warping path. The acoustic 
distance cij can then be calculated as: 

  (1) 

fik and fjk are the acoustic feature vectors of units ui and uj 
respectively, calculated at the k-th position of the warping 
path. The feature vector consists of the first 12 MFCCs, log f0 
and energy. di and dj are the durations of units i and j, 
respectively. and  are the standard deviations of feature 
l and segment duration, calculated using all instances of a 
particular phoneme. The weight  provides additional 
scaling to the difference in durations. 

If these distances are calculated for all units representing 
the same phoneme, the values can be analyzed statistically and 
outliers can be removed. Let  be the average distance of a 
particular unit . We can then calculate the mean µ and  of 
this average distance for all units. Outliers are then be detected 
as 

     (2) 

 is a parameter that allows selecting how many units are 
removed from the speech inventory. After some experiments, 

 was set to 3 which removed 1.2% and 1.3% phones from the 
full and Arctic database, respectively. All non-uniform units 
that included at least one phone detected as an outlier were 
removed from the inventory.  

2.2. UK English Front-end 
The UK English front-end used in this Blizzard Challenge uses 
some Festival [6] modules to perform its tasks and is the same 
as the one we used in the previous Blizzard Challenge, except 
for some minor bug fixes and the removal of the symbolic 
intonation prediction module. The target prosody of the output 
speech is now described symbolically only, in terms of 
linguistic features (see tables 1 and 2). Hence, there is no need 
anymore to build accurate models for acoustic parameters such 
as f0 and duration.  

Firstly, the input text is normalized into words, of which 
the pronunciation can be determined. A part-of-speech tagger 
determines the syntactic category of each word in the 
utterance. These words are organized into phrases. For this 
purpose, the pause prediction module [1] classifies each word 
as being followed by a heavy, medium or light pause, or as a 

word that is not followed by a pause. Phrase boundaries are 
put after words that are followed by heavy or medium pauses. 
The pause prediction module is trained automatically on the 
speech database of the voice, and provides an adequate model 
of the pausing strategy of the speaker [1].  

Next, the word pronunciation module converts each word 
into segments (i.e. phonemes) and groups these segments into 
syllables. Lexical stress is assigned to each syllable. The 
pronunciation of a word can be looked up in a lexicon, in our 
case the Unisyn lexicon [7], with its orthographic transcription 
and part-of-speech tag as input. The Unisyn lexicon supports 
multiple regional pronunciation variants. The lexicon was set 
to its Received Pronunciation (RP) variant, which is close to if 
not the accent of the speaker itself. Out-of-vocabulary words 
are handled by the memory-based grapheme-to-phoneme 
conversion technique described in [8], implemented with 
TiMBL [9]. No post-lexical processing is performed. Finally, 
silences are inserted after each word classified as followed by 
a pause. 

2.3. Back-end 
The back-end of the DSSP synthesizer consists of a unit 
selection framework, allowing several different unit selection 
approaches to be implemented. Targets are constructed based 
on the output of the front-end,. These targets could be of any 
size.  

Units matching the phonemic description of the targets are 
searched for in the database. A simple pruning method is used: 
only the N-best units in terms of target costs were used in 
order to speed up the selection (N is set at 50 units). If no units 
are found for a particular target, the default back-off strategy is 
to look for phones or demiphones instead. If still no suitable 
units are found, any missing demiphone is replaced by a 
silence.  

The search for the best unit sequence is performed by our 
implementation of the Viterbi algorithm and the cost function 
described in [1]. The cost function takes target and join costs 
into account. Units are then concatenated using a PSOLA-
based algorithm with optimal coupling [10]. The length of the 
silences is set to a fixed value, depending on the type of the 
silence (heavy, medium or light). 

Finally, the resulting speech signal is time-scaled 
uniformly using WSOLA [11]. For our Blizzard voices, a 
time-scaling factor as low as 0.8 is able to increase 
intelligibility while still keeping the utterance sounding natural 
and at a natural speaking rate. 

2.3.1. Statistical target cost 

In our previous Blizzard entry, the suitability of a particular 
unit in a given context was estimated using the weighted sum 
of target costs. Those costs were calculated for every 
demiphone, and could thus be used with units of any size in 
terms of demiphones. Besides a target cost taking the extended 
phonemic context into account [12], other target costs were 
used which individually take a single symbolic feature into 
account. Their cost was calculated as the number of 
demiphones for which the target and unit feature values do not 
match.  

This approach has some disadvantages. It assumes that the 
target costs are perceptually independent, which is a quite 
strong claim as the interaction amongst symbolic features is 
not taken into account. Furthermore, it assumes that each of 
the target costs is of equal importance in all possible contexts: 
the same set of weights was used in all cases. However, not all 
features are as important in all situations, partly due to the use 
of a finite speech database which does not contain all possible 



feature combinations. It should be clear that those context-
independent weights are not as optimal as properly set context-
dependent weights. In the latter case, a different set of weights 
is used for different target contexts. Because these weights 
depend even more on the current speech database, optimizing 
a voice becomes increasingly difficult when context-depended 
weights are used. The DSSP synthesizer supports this type of 
weights by the use of decision trees and we are currently 
investigating how to train these weights automatically.  

In the last few years, statistical approaches, mainly based 
on HMM models, have increasingly found their way into unit 
selection speech synthesizers. These take the stochastic 
properties of the speech signal into account. In general, 
statistics are used to model the acoustic properties of the 
signal. For example, we can use the Kullback-Leibner distance 
between HMM models as a target cost [13] to measure the 
amount of overlap between the target and unit distributions. 
Another approach would be to replace the cost function and 
select the best sequence with a probabilistic description [14] 
[15]. The target cost can then be based on the likelihood of the 
one or more acoustic properties (like f0 or segmental duration) 
of the unit. The best sequence would then be the most 
probable one.  

In this year’s challenge entry, we introduce a new 
approach which is also based on statistics, but does not 
explicitly model (part of) the acoustic signal. Instead, we 
model symbolic distances between target and unit 
descriptions. By doing so, we can model the binary symbolic 
target cost functions used in last year’s entry. This has the 
advantage that there is no need to find an optimal weight for 
each of those target costs, since statistics can be used to map 
the vector containing the symbolic differences on the 
perceptual suitability of the unit. In what follows we describe 
how we achieved this. 

As features for the target model, we use the symbolic 
difference vector, which contains the symbolic distances 
between the features of the target and those of the candidate 
unit. In our case, this vector contains either 0 or 1, depending 
on whether the features values match or not. In order to model 
the difference vector, we use of a context-dependent decision 
tree of which the leaves represent a Gaussian mixture model. 
In the current implementation, single Gaussians with diagonal 
covariance matrices are used. To train the model, we use the 
symbolic differences between units from the database which 
are close to each other in terms of an acoustic distance. The 
following procedure is being used: 

1. For N units from the database, select the M closest 
other units in terms of acoustic distance. M was set to 
5. The same acoustic distance as in equation 1 is 
used. 

2. Calculate the M*N symbolic difference vectors.  
3. Build a context-dependent decision tree using the 

maximum likelihood (ML) principle and train the 
Gaussian models using the expectation-maximization 
(EM) algorithm. This tree is a binary decision tree of 
which each new branch is determined by one of the 
symbolic target features. A branch is split in case the 
sum of likelihoods of the child branches is larger than 
the likelihood of the parent branch. In order to obtain 
reliable statistics, each of the models is trained using 
at least a minimum amount of training examples.  

While synthesizing, the best matching GMM can be selected 
from the decision tree based on the symbolic features of a 
target. Note that we calculate the statistical target cost for each 
demiphone individually. For longer units, the target cost is 
calculated for each demiphone separately and summed in 
order to obtain the total target cost. For each candidate 

demiphone unit, the symbolic difference vector is obtained by 
comparing its symbolic features with those of the target. The 
cost of using that particular demiphone can then be calculated 
as the negative log likelihood of this vector matching the 
selected GMM. The negative log is used to convert the 
likelihood into a more traditional target cost, in which the best 
match corresponds to the smallest value.  

Table 1 lists the features used for both the decision tree 
clustering and to build the target model. Due to lack of time 
the target model used in our voices was trained on the data 
from the Arctic subset only.  

Table 1. Features used in the statistical target cost. 
Same features were also used to construct the decision 

tree. Those with a * are also calculated for the 
neighboring segments, syllables or words. 

Neighboring syllables are restricted to the syllables of 
the current word. Three neighbors on the left and 

three on the right are taken into account. 

Level Description 
Segment Phonemic identity* 
Segment Position in syllable 
Syllable 
Syllable 
Syllable 
Syllable 
Syllable 

 
Syllable 

 
Syllable 

 

Position in word* 
Onset, nucleus and coda size* 

Lexical stress* 
Coda and onset type [16]* 

Distance to next/previous stressed syllable, 
in terms of syllables 

Number of stressed syllables until 
next/previous phrase break 

Number of accented syllables until 
next/previous phrase break 

Word 
Word 
Word 
Word 
Word 
Word 
Word 
Word 

 
Word 

Position in phrase 
Part of speech* 

Is_content_word* 
Is_capitalized* 

Position in phrase* 
Token punctuation* 

Token prepunctuation* 
Number of words until next/previous 

phrase break 
Number of content words until 

next/previous phrase break 
 

2.3.2. Statistical join cost 

In our previous Blizzard entry, the smoothness of a join was 
measured acoustically, using differences in pitch, spectrum 
and energy. Additionally, units that are not adjacent in the 
speech database are penalized. The complete smoothness 
measure is a weighted sum of those individual sub-costs. Our 
system joins at diphone boundaries, except in some rare cases 
when back-off is needed. However, not all units can be joined 
equally well. For example, a join in the middle of a voiceless 
phone is in general less noticeable then a join in the middle of 
a voiced phone. However, the quality of each join in our 
previous system was measured using the same set of join costs 
and weights. Furthermore, the most naturally sounding join 
might not be the one with the lowest join cost (i.e. minimizing 
the join cost might result in an over-smoothed signal). 

In our current Blizzard entry, we use a different way of 
calculating the join cost by using a stochastic model for 
natural joins. This model is a context clustering decision tree 
modeling the natural transition at diphone boundaries. A 
separate model was build for joins at phone boundaries, which 



could occur when the systems backs off to selecting phones or 
demiphones. A similar join model has been successfully used 
in the previous Blizzard entries of iFlyteck [14] and DFKI 
[17]. By modeling naturally occurring joins, a fully trainable 
join cost can be constructed. The only parameters that need to 
be set are those that are needed to construct the model and no 
further manual tuning is required. 

In order to model the transitions, our join model uses the 
acoustic features present at both sides of a join. For this, the 
differences of MFCC’s, log f0 and energy are used. The 
statistical model is a Gaussian mixture model with diagonal 
covariance matrices, which provides the likelihood that the 
observed transition is natural. The GMMs are trained using the 
expectation-maximization algorithm. As we want to obtain an 
accurate statistical model, our system supports multiple 
mixtures.. 

Based on the symbolic features of the target context at join 
position, the most suitable GMM is selected from the decision 
tree and used to calculate the likelihood of the particular 
candidate-join. Since the best join is that which has the largest 
likelihood, we use its negative log likelihood as the join cost. 
Since not all possible target context combinations exist in the 
speech database, decision tree context clustering is used to 
provide a tree.  

The parameter settings were optimized using several 
informal listening experiments. Table 2 lists the symbolic 
features we used in the decision tree. Due to a lack of time, the 
join model used in both our voices was trained on the data 
from the Arctic subset only. 

Table 2. Symbolic features used to construct the 
context-dependent join cost model. For joins at phone 
boundaries, these features are calculated at both sides 

of the join. 

Level Description 
Segment 

 
Phonemic identity, including that of 

neighboring segments (up to two neighbors) 
Syllable Lexical stress 
Syllable 

Word 
Word 
Word 
Word 
Word 

Position in word 
Part-of-speech 

Is_content_word 
Position in phrase 

Is_capitalized  
Token punctuation 

 

3. Results 
The current challenge differs from previous editions due to the 
use of a hub and spoke design. Participants had to complete 
the UK English or Mandarin voices (hub tasks) and could 
optionally submit voices for the spoke tasks. In our case, we 
completed both UK English voices, and submitted the same 
full voice for spoke tasks ES2 and ES3. The former was to test 
the quality of voices transmitted through a telephone channel; 
the latter to test the naturalness of the speech in a dialog 
system. Note that, at the time of writing of the paper, detailed 
results were not yet available; hence no statistical comparison 
to our previous results could be made. Therefore, we were 
unable to test whether there are any significant differences 
amongst our two voices. As in the previous editions, the 
following listener groups were used: 

- ER: Volunteers 
- ES: Speech experts 
- EU: Paid participants (native speakers of English) 

In this Blizzard challenge, the DSSP synthesizer is system Q. 
A comparison of results of all participants can be seen in 
figures 4 and 5. 

3.1. Similarity 
As our system is based on unit selection and the units are only 
slightly time-scaled, our voices should sound very close to the 
target speaker. Results are shown in figure 1. Similarity was 
measured using a 5 point MOS scale. The subjects rated our 
voice not as similar to the target speaker as what we would 
expect. Last year, we have noted that the subjects might also 
have been influenced somehow by the synthesis quality 
(naturalness), and the same trend can be seen in the current 
results. Also, similar to our previous Blizzard submission, our 
small voice is slightly more similar to the target speaker. 
When our full voice is transmitted through a telephone 
channel, the similarity is generally lower than “clean” speech. 

Figure 1: Mean similarity to target speaker. 

3.2. Naturalness 
The naturalness of the speech was measured using a 5 point 
MOS scale. As can be seen in figure 2, the quality of the 
smaller voice is slightly better. This is in contradiction to the 
common assumption that larger unit selection voices provide 
better quality. However, this might be explained by the use of 
the same statistical models for both voices. Although the same 
speaker is used, the difference in material and small changes in 
recording conditions might be the cause of the poorer 
performance. Sharing the same models amongst voices, might 
therefore not be a good idea. Still, we did not test whether 
models build using the full voice result in changes in quality. 
As was also noted last year, the difference in type of speech 
material could also degrade the quality of the voice. Other 
voices we have constructed using our synthesizer are typically 
based on more homogeneous material. 

When the full voice is transmitted through a telephone 
channel, the quality is perceived as being similar or slightly 
better compared to “clean” speech. This could be explained by 
the fact that the telephone channel masks some of the artifacts 
present in the synthesized speech. 

In the ES3 task, listeners were also asked to rate the 
appropriateness of the synthesis in a dialog system. The mean 
response was 2.8, indicating our system is fairly appropriate, 
while it was not specially optimized to handle dialogs.  

3.1. Intelligibility  
The intelligibility of the voice was measured using 
semantically unpredictable sentences (SUS). The results are 
shown in figure 3. When comparing these to last year’s results, 
our changes seemed to improve the speech intelligibility, 
hence the lower (=better) scores of the SUS sentences. 



 

 

Figure 2: Mean naturalness.  

 
Figure 3: Mean intelligibility scores. Lower results 

indicate better performance. 

4. Conclusions 
In 2009, the DSSP synthesizer participated for the second time 
in the Blizzard Challenge. It was the first large test performed 
on the use of our new statistical cost functions. Even though in 
both participations the same database was used, comparing the 
2009 results to the results of last year’s challenge is not 
straightforward due to a difference in test material and 
subjects. The results of the mean opinion scores of naturalness 
and similarity seem slightly lower than our system’s results of 
last year, although this needs to be confirmed by a statistical 
test. This result could partly be explained by the fact that at the 
time of building the voices, we were still experimenting with 
the optimal settings of the target and join models. On the other 
hand, our changes seemed to improve the speech 
intelligibility; hence the lower (better) scores of the SUS 
sentences.  
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Figure 4: Similarity, naturalness and intelligibility results for 
the full UK English voice (EH1). 

Figure 5: Similarity, naturalness and intelligibility results for 
the Arctic UK English voice (EH2). 


