
The GlottHMM Speech Synthesis Entry for Blizzard Challenge 2010

Antti Suni1, Tuomo Raitio2, Martti Vainio1, Paavo Alku2

1Department of Speech Sciences, University of Helsinki, Helsinki, Finland
2Department of Signal Processing and Acoustics, Aalto University, Helsinki, Finland

antti.suni@helsinki.fi, tuomo.raitio@tkk.fi

Abstract
This paper describes the GlottHMM speech synthesis entry
for Blizzard Challenge 2010. GlottHMM is a hidden Markov
model (HMM) based speech synthesis system that utilizes glot-
tal inverse filtering for separating the vocal tract from the glot-
tal source. The source and the filter characteristics are modeled
separately in the framework of HMM. In the synthesis stage,
natural glottal flow pulses are used to generate the excitation
signal, and the excitation signal is further modified according to
the desired voice source characteristics generated by the HMM.
In order to prevent the over-smoothing of the vocal tract fil-
ter parameters, a new formant enhancement method is used to
make the vocal tract resonances sharper. Finally, speech is syn-
thesized by filtering the glottal excitation by the vocal tract filter.
Index Terms: speech synthesis, hidden Markov model, glottal
inverse filtering

1. Introduction
GlottHMM text-to-speech (TTS) system [1, 2] is developed
in a collaboration between Aalto University and University of
Helsinki. In this entry, we have used our speech synthesis sys-
tem that emphasizes the importance of the speech production
mechanism, especially in terms of separating the two distinct
parts of it: the glottal excitation and the vocal tract filter.

Compared to typical parametric synthesizers, our detailed
model of the excitation should potentially allow for better con-
trol and production of prosody, speaker characteristics and
speaking style, and this year’s challenge had several interest-
ing tasks to test this assumption. Thus, we participated in all
tasks, except ES3 and MS1.

Comparison with other systems was an important motiva-
tion for participation, but the process of building the voices was
also very useful in developing our system further. The EH1 and
MH1 were by far the largest databases we have used, and re-
quired optimization of the training process. Additionally, these
were our first serious attempts at building non-Finnish voices,
and a prototype of English front-end was developed to test our
prominence based prosody model [3] for a new language.

As this is our introduction to the challenge, we will first de-
scribe our synthesis system in some detail, followed by discus-
sion on voice building and English front-end, and finally pick
some selected results for analysis.

2. Overview of the system
Statistical parametric speech synthesis has recently become
very popular due to its flexibility. However, the speech qual-
ity and naturalness of parametric speech synthesizers are usu-
ally inferior compared to state-of-the-art unit selection speech
synthesis systems. This degradation is mainly caused by three

factors: oversimplified vocoder techniques, acoustic modeling
accuracy, and over-smoothing of the generated speech param-
eters [4]. The GlottHMM text-to-speech (TTS) system tries to
overcome the problems especially with oversimplified vocoder
techniques and the over-smoothing of the speech parameters.

The GlottHMM TTS system uses a vocoder technique that
utilizes glottal inverse filtering [5]. In the parametrization stage,
glottal inverse filtering is used to decompose the speech into
the glottal source signal and the model of the vocal tract filter.
This enables the separate analysis and modeling of the glottal
source and the vocal tract filter, and thus the reconstruction of
the excitation signal in the synthesis stage. The modeling of the
voice source has been under intensive research recently, espe-
cially in HMM-based speech synthesis, and several techniques
have been proposed to model the source signal [6, 7, 8, 9]. In
synthesis stage, GlottHMM TTS system uses real glottal flow
pulses extracted from natural speech for reconstructing the ex-
citation signal, and the spectral characteristics of the excitation
signal are further modified by filtering the signal with an adap-
tive IIR filter in order the preserve the desired voice quality.

The vocal tract filter is used to filter the excitation to gener-
ate speech. However, the over-smoothing of the speech parame-
ters is especially severe perceptually when it affects the formant
structure of speech. The over-smoothing excessively increases
formant bandwidths, which results in unnatural perceptual qual-
ity of vowels. Thus, the GlottHMM system uses a new formant
enhancement technique for sharpening the formants of the vocal
tract spectrum [10]. The method is described in Section 2.3.

GlottHMM is built on a basic framework of an HMM-based
speech synthesis system [11], but the parametrization and syn-
thesis methods differ from conventional vocoders and are there-
fore explained in detail below

2.1. Speech parametrization

The flow chart of the speech parametrization algorithm is shown
in Figure 1. First, the signal is high-pass filtered (cut-off fre-
quency 70 Hz) in order to remove possible low-frequency fluc-
tuation from the signal. This high-pass filtering is important
since low-frequency fluctuation may create large errors to the
glottal flow estimate, since glottal inverse filtering requires in-
tegration. The signal is then windowed with a rectangular win-
dow to 25-ms frames at 5-ms intervals and the speech features,
presented in Table 1, are extracted from each frame. The or-
der of all-pole modeling, depicted in Table 1, depends on the
speaker, and usually lower order spectral models work well for
female speakers while greater order spectral models yield better
results for male speakers.

The log-energy of the windowed speech signal is evaluated,
after which glottal inverse filtering is performed in order to es-
timate the glottal volume velocity waveform from the speech
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Figure 1: Illustration of the parametrization stage. The speech
signal s(n) is decomposed into the glottal source signalg(n)
and the all-pole model of the vocal tractV (z) using the IAIF
method. The glottal source signal is further parametrized into
the all-pole model of the voice sourceG(z), the fundamental
frequencyF0, and the harmonic-to-noise ratio (HNR). The ob-
tained parameters are converted to a suitable representation for
the HMM system.

signal. An automatic glottal inverse filtering method, Iterative
Adaptive Inverse Filtering (IAIF) [12, 13], is utilized. IAIF it-
eratively cancels the effects of the vocal tract and the lip ra-
diation from the speech signal using all-pole modeling. Con-
sequently, the outputs of the IAIF algorithm are the estimated
glottal flow signal and the all-pole model of the vocal tract. In
order to capture the variations in the glottal flow due to dif-
ferent phonation or speaking style, the spectral envelope of the
glottal flow is further parametrized with linear predictive cod-
ing (LPC). This spectral model of the glottal excitation captures
mainly the spectral tilt, but also the more detailed spectral struc-
ture of the source. The degree of the LPC analysis depends on
the speakers, and analysis orders from five to ten have proven
to work well.

The fundamental frequency is estimated from the glottal
flow signal with the autocorrelation method. In order to eval-
uate the degree of voicing in the glottal flow signal, a harmonic-
to-noise ratio (HNR) is determined based on the ratio between
the upper and lower smoothed spectral envelopes (defined by
the harmonic peaks and interharmonic valleys, respectively) and
averaged across five frequency bands according to the equiva-
lent rectangular bandwidth (ERB) scale [14]. LPC models of
the vocal tract and the voice source are further converted to
line spectral frequencies (LSFs) [15], which provides stabil-
ity [15] and low spectral distortion [16]. In case of unvoiced
speech, conventional LPC is used to evaluate the spectral model
of speech.

2.2. Synthesis

The flow chart of the synthesis stage is shown in Figure 2. The
excitation signal consists of voiced and unvoiced sound sources.
The basis of the voiced sound source is a glottal flow pulse ex-
tracted from a natural vowel. By interpolating the real glottal
flow pulse according toF0 and scaling in magnitude accord-
ing to the energy measure, a pulse train comprising a series of

individual glottal flow pulses is generated. In order to control
the degree of voicing in the excitation, the amount of noise in
the excitation is matched by manipulating the phase and magni-
tude of the spectrum of each pulse according to the harmonic-to-
noise measure at each frequency band. Furthermore, the spec-
tral tilt of each pulse is modified according to the all-pole spec-
trum generated by the HMM. This is achieved by filtering the
pulse train with an adaptive IIR filter which flattens the spec-
trum of the pulse train and applies the desired spectrum. For
voiced excitation, the lip radiation effect is modeled as a first-
order differentiation operation. The unvoiced excitation is com-
posed of white noise, whose gain is determined according to
the energy measure generated by the HMM system. The vocal
tract parameters are enhanced in order to alleviate for the over-
smoothing, and the LSFs are then interpolated and converted to
LPC coefficients, and used for filtering the excitation signal.

2.3. Alleviation for the over-smoothing

In order to alleviate for the over-smoothing of the vocal tract
parameters, a new formant enhancement technique [10] is used
to modify the LPC coefficients. The method is based on mod-
ifying the power spectrum of the all-pole model, and then re-
evaluating LPC based on the modified power spectrum. The
algorithm is described as follows. First, the power spectrum
is evaluated from the LPC coefficients, for example, using the
fast Fourier transform (FFT). This yields the spectral model of
speech, which can be modified in order to enhance the over-
smoothed formants. The modification procedure is based on
additionally reducing the energy at the low-energy parts, i.e.,
the valleys of the spectrum. The reduction is performed by
multiplying the low-energy regions with a small real-valued co-
efficient α, while the spectral peaks are left unmodified. The
spectral peaks and the valleys are easily found from the smooth
LPC envelope by searching for the zero-crossing points in the
differentiated spectral envelope. After the additional reduction
of the valleys, the modified power spectrum is inverse Fourier
transformed into a new autocorrelation function, from which a
new LPC model can be evaluated using the Yule-Walker equa-
tions. The new LPC model will most likely show sharper for-
mants since LPC focuses on the spectral peaks in the frequency
domain. For normal voices,α = 0.3 was used for formant
enhancement.

3. Building voices
In this chapter, we will describe the steps taken in building the
English voices. Instead of using Festival tools, we made a deci-
sion to use this challenge as an opportunity to develop our own
English front-end. We were especially interested in how our
perceptual prominence based prosody modelling [3], developed
for Finnish, would work for other languages. Unfortunately,

Table 1: Speech features and the number of parameters.

Feature Parameters per frame
Fundamental frequency 1
Energy 1
Harmonic-to-noise ratio 5
Voice source spectr. (filter ord.) 10 (male), 7 (female)
Vocal tract spectr. (filter ord.) 30 (male), 20 (female)
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Figure 2: Illustration of the synthesis stage. The basis of the
voiced excitation signal is a library glottal flow pulse, which
is modified according to the voice source parameters. Unvoiced
excitation is composed of white noise. The excitation signals are
combined and filtered with the vocal tract filterV (z) to gener-
ate speech.

due to time constraints, there are no proper evaluation results to
report.

3.1. Data preparation

To cope with the difficulties of English orthography, we used
the unilex lexicon (RP) as our pronunciation dictionary. To dis-
ambiguate between pronunciation variants, we enrich the texts
with a part-of-speech tagger TagChunk1. Additional disam-
biguation on training data was performed with HTK by recog-
nizing the most likely pronunciations with monophone models,
trained from the provided monophone labels. The breaks were
recognized similarly, allowing optional silences between words.
At this point, we also discarded much of the training data, based
on low probability scores that could indicate problematic utter-
ances.

1http://www.cs.utah.edu/~hal/TagChunk/

3.2. Prosody modeling

In order to model sentence level prosody well, some form of
phonological level has to be assumed. In English TTS systems,
such as Festival, this level is usually represented by pitch ac-
cents. Each lexically stressed syllable can be either accented or
not, with optional qualification ofF0 peak location and shape
using ToBI transcription system. The accents typically fall on
content words while function words are not often accented. The
accent model has been successful in TTS because the presence
or absence of accent can be annotated somewhat reliably based
on text alone, and the prediction of accents in English TTS can
be performed with good accuracy from shallow linguistic fea-
tures, although the different ToBI accent classes are usually col-
lapsed. This leaves a simple binary model, where the strength
of accents can only be predicted indirectly, based on positional
features and PoS information.

We have, however, used a model based on perceptual
prominence, which could be regarded as a more fine grained
accent decision, without the complexities of ToBI annotation.
Additionally, while the pitch accent is, by definition, concerned
with mainly one aspect of prosody, namelyF0, prominence can
also be perceived based on duration, energy and spectral char-
acteristics, and thus can affect the HMM clustering of all pa-
rameter streams favorably.

The prominences of the training corpora were annotated
automatically, though in a supervised fashion. One of the au-
thors annotated the prominences of 100 utterances from EH1
database, marking each syllable with a prominence value 0, 1,
2 or 3. These values correspond roughly to unaccented, non-
nuclear accent, nuclear or other strong accent and emphatic or
contrastive accent. The rest of the corpora were then tagged
with a regression model. The features used to build the model
were various syllable-level measurements (maximum, mini-
mum, amplitude, etc.) ofF0, duration, energy and HNR. While
this annotation method is prone to alignment andF0 errors, the
resulting tags are useful for HMM-synthesis training, as is ev-
idenced by context-clustering trees where questions on promi-
nence appear frequently and early on all streams. An example
of prominence annotation and synthesis using correct promi-
nence labels is shown in Figure 3, which gives indication on the
accuracy of the synthesis ofF0, if the prominence labels were
predicted correctly.

The prosodic boundaries were annotated in a similar fash-
ion with strengths 1, 2, 3, and 4. The features used in annotation
were the silence duration, and duration of syllables surrounding
the silence. Also, a boundary of strength 1 was marked in a case
of clearly lengthened syllable, even in absence of silence.

Annotated data was converted to our XML-based utter-
ance structure, and contextual features were then extracted for
full-context HMM-training. The features included typical po-
sitional and distance information of phones, syllables, words
and phrases. Prominence features included syllable and word
level information of prominence and prominence of surround-
ing units, distances to high prominence (2, 3) units and dis-
tances to focused (3) units. Notably, no PoS nor other high
level linguistic information with indirect effect on phonetic re-
alization was included in HMM-training.

3.3. Prosody prediction

To predict the prominences on TTS, we built a CART predic-
tor on the previously automatically annotated EH1 corpus, us-
ing typical shallow features, such as PoS and unigram frequen-
cies, with additional syntactic phrase information provided by
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Figure 3:Example of prominence annotation and synthesis ofF0 from EH1 database. The blue line shows the originalF0 contour and
the grey line shows the contour produced by the synthesizer, given correct prominence labels.

TagChunk. However, while the automatic annotation quality
was good enough for HMM-training, the corpus was probably
not large or consistent enough to produce a very good predicting
model. The predictor failed to learn level 3 prominence com-
pletely, as the instances of emphasis in corpus were few and
erratically annotated. Some additional rules based on lexical
cues were written to alleviate the problem. For example, nouns
following focus particlesevenandonlywere emphasized. Other
rules were added to take into account some discourse-level phe-
nomena, such as decreasing the prominence of given words in
certain contexts.

Prosodic boundaries were predicted by rule, using punctu-
ation, PoS and syntactic chunk information. Other front-end
components, such as pre-processing and post-lexical rules, re-
ceived very little attention.

3.4. Parametrization and HMM-training

HMM-training was prepared by parametrizing the speech files
as described in Section 2.1.F0 ranges of speakers were manu-
ally determined, and formant enhancement described in Section
2.3 was applied to vocal tract LSFs prior to training. English
voices were trained with contextual labels of our own, and Man-
darin voices with iFlytek labels.

HTS 2.1 was used to train context-dependent multi-stream
and multi-space distribution (MSD) hidden semi-Markov mod-
els. The MSD structure was used for statistical modeling of the
fundamental frequency. The rest of the features are modeled as
continuous probability distribution (CD) streams. Other source
features, the harmonic-to-noise ratio and the voice source spec-
trum would also be natural candidates for MSD modeling, but
the results of such experiments have been mixed, so the submit-
ted voices use CD streams. Only the vocal tract LSFs andF0

features were considered during the alignment step of the pa-
rameter re-estimation; the weights of the other streams were set
to zero. This is probably not optimal, but finding good stream
weights on our multi-stream system is difficult.

Typical five-state left-to-right MSD-HSMMs were used for
the submitted voices. Each state has a single Gaussian probabil-
ity distribution function (pdf) with a diagonal covariance matrix
as the state output pdf and a single Gaussian pdf with a scalar
variance as the state duration pdf.

The training followed the de-facto standard procedure of

HTS. Provided time alignments were used to get the initial es-
timates of monophone MSD-HSMMs. Monophones were then
re-estimated five times, followed by conversion to full-context
models, then re-estimation (1x), decision-tree based clustering,
re-estimation (5x), re-estimation of untied models (1x), cluster-
ing and finally re-estimation (5x) of final models.

Each stream was clustered independently, as different con-
textual features affect different parameter types, and this way
we can use the training data most efficiently. However, this
method should probably be reconsidered, as our parameter
types, particularly different source parameters are obviously not
independent from each other, and the correlation between pa-
rameter types is largely lost in independent clustering. This is a
possible cause for some artefacts present in submitted voices.

On the technical side, due to large number of parame-
ters, our training process is somewhat more resource intensive
than conventional HMM-synthesizers. Combined with large
databases used in the challenge, this posed some difficulties
on our training procedure, and the computer previously used
for training. The problems were solved by moving the train-
ing platform to 64-bit Mac with 8 processor cores and 16GB of
memory. With re-estimation and clustering steps performed in
parallel, training of the largest voice, EH1, took six days real-
time.

3.5. Resulting voices

For parameter generation from HMMs, we applied
HTS ENGINE, modified to use arbitrary number and type
of streams, as defined in configuration file. Post-filtering and
global variance expansion were applied to voices sparingly,
as the formant enhancement prior to training provided clear
formants. Resulting voices were considered to be of fine
quality, except for a considerable number of voicing errors
and fluctuatingF0, caused at least partly by careless tuning
of F0 estimation parameters, and possibly, problems with
our labels. Lack of robustness on voicing boundaries have
long been a weakness of our system, and the voicing errors
in our system tend to cause particularly audible artefacts, due
to inconsistencies between different source and vocal tract
parameters.

Unfortunately, the front-end work left no time for solving
these issues and re-training the large voices. We had to resort



to forced voicing decision in parameter generation; vowels and
voiced consonants were set to be voiced and other phones un-
voiced. This decision led to other problems, because, in reality,
the voicing boundaries do not align perfectly on HMM-model
boundaries.

3.6. Adapted Roger

Voice for task ES1 was trained by adaptation, using the HMMs
of large EH1 data as the source voice and the 100 sentences
from Roger as adaptation data. All parameter types were
adapted, using CMLLR and SMAP algorithms provided by
HTS. Because of difficulties in tuning the adaptation parame-
ters, the resulting voice was quite unstable, and parameters had
to be smoothed in synthesis.

3.7. Speech in noise tasks

This year’s Blizzard Challenge included tasks to build voices
suitable to be heard in the presence of additive noise. For these
tasks, the voices trained for tasks EH1 and MH1 were used as
bases. Taking advantage of the flexibility of our system, we
tried to model several aspects of what is known of actual people
speaking in the presence of noise, or the Lombard effect [17].
Since naturalness and speaker similarity were not considered in
the evaluation, large modifications were possible.

Firstly, to model careful articulation, we increased the
prominence of all stressed syllables in content words and ap-
plied more post-filtering to produce clearer formant structure.
In addition, the post-filtering was used only during the open
phase of the glottal cycle. This procedure tries to imitate the
physiology of the speech production mechanism, where the for-
mants are actually stronger while the glottis is open, providing
a longer acoustic tube. Also, the rate of speech was lowered by
a factor of 0.9 in parameter generation.

Secondly, to facilitate following of the speech flow, pitch
was raised by a factor of 1.4 with compressed range. Vocal tract
length was also shortened slightly to match the raised pitch and
raise formant frequencies, as observed in real Lombard speech.
Further, the intra-utterance silences were replaced with bound-
aries with pre-boundary lengthening only to provide continuous
speech flow.

Thirdly, to model the speakers’ efforts to make the speech
more audible, the harmonic structure of the glottal pulse was
modified to be sharper, modeling the decreased spectral tilt in
the voice source while loud voices are produced. The spectral
tilt was halved from the normal spectral tilt. This has an effect
of concentrating most of the energy on formant frequencies, the
most sensitive frequencies of human auditory system. The re-
sulting signal waveform was then compressed in order to make
the loudness of the speech as high and uniform as possible.

Subjectively, the resulting voice sounded very much like air
force radio communication. Clear improvement on intelligibil-
ity compared to baseline voices was confirmed by authors in
presence of babble noise and white noise.

4. Results and discussion
4.1. English

This year’s challenge had many high quality entries on English
tasks, as evidenced by the general rank drop of the HTS base-
line systems, compared to last year. Given the problems in voice
preparation, the results on English hub tasks were as expected;
our MOS scores were consistently higher than STRAIGHT-

based HTS baseline systems, though not significantly so in all
tasks, but we could not compete with the best voices.

Among quite similar systems, the frequent artefacts and un-
stableF0 contour probably affected our scores severely. The in-
telligibility scores, typically a strong point for parametric syn-
thesis, were also only average. This can be attributed to voic-
ing problems, which affected the stop consonants, and possi-
ble omissions and bugs in the pronunciation component of our
front-end. Overall, the effect of the described front-end and
prosody modeling can not be confirmed either way. As the test
sentences were short and quite uniform in structure, the detailed
prosody modeling was probably not particularly advantageous
in this year’s challenge.

4.2. Mandarin

We were pleased to note that our system performed well on the
Mandarin tasks, especially as high pitched female voices are
difficult for the IAIF method. Our system ranked among the
best on MOS on task MH1, as shown in Figure 4, with our sys-
tem marked with ‘N’. On the other hand, the similarity scores
were quite bad for the Mandarin voices, even compared to
HTS2005 baseline. The reasons for this are not completely clear
to us. Maybe our experimental formant enhancement methods
or the glottal pulses extracted from different speakers change
the voice characteristics more than we had expected. On in-
telligibility tests, only the original speaker ranked significantly
higher than our system, which further suggests that the English
results were affected by temporary problems.

4.3. Speech in noise

The tasks ES2 and MS2 were clearly suitable for our synthesis
approach. The high modifiability of our system ensured that our
voices had the lowest word error rates by a clear margin, even
compared to the original speakers. It must be said though, that
this comparison was unfair to original speakers, as their speech
was recorded in silent conditions. The results of the English
voice are shown in Figure 5.

5. Conclusions and future work
In this paper, we have described the GlottHMM speech synthe-
sis system used for Blizzard challenge 2010. Our previous work
has been done almost exclusively on Finnish synthesis, so it was
very valuable to get the feedback of our system’s status in the
whole speech synthesis community. Participation provided us
with important information on the strengths and weaknesses of
our system. The results of the hub tasks showed that we have to
work on the robustness and speaker similarity issues of our sys-
tem. On the other hand, we got support on the relevance of our
physiologically inspired synthesis approach on the good results
of the speech in noise tasks.
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