
The ModelTalker System 

H. Timothy Bunnell1,2, Jason Lilley1,2, Chris Pennington1, Bill Moyers3, & James Polikoff1 

1 Speech Research Lab, Nemours Biomedical Research, Wilmington DE, USA 
2 Department of Linguistics, University of Delaware, USA 

3 AgoraNet Inc., Newark DE, USA 
{bunnell,lilley,penningt,polikoff}@asel.udel.edu, moyers@agora-net.com 

 

Abstract 
The ModelTalker TTS system has recently been largely 
rewritten to change its design to make full use of information 
derived from talker-specific HMMs that are trained in 
optimizing phonetic transcription and alignment. Because this 
system is substantially different than the system last used in a 
Blizzard challenge in 2005, we decided to participate once 
again. This allows us to both compare performance with the 
previous version on similar tasks, and with the latest cutting 
edge TTS technology. The current version of ModelTalker 
appears to be comparable with the previous version in 
segmental intelligibility and substantially improved in the 
naturalness of its synthetic output. 

 
Index Terms: voice banking, speech synthesis, unit selection 

1. Introduction 
ModelTalker is a unit selection text to speech (TTS) system 
that has been developed in conjunction with a broader 
application suite for use in voice banking, a process in which 
users who are at risk for losing the ability to speak record a 
corpus of their own speech for later use in a communication 
aid or Speech Generating Device (SGD). Thus, the broad 
project goals are to allow users who typically have little or no 
knowledge of speech technology or acoustic phonetics to 
successfully record a corpus of speech that is large and varied 
enough to support concatenative synthesis. 

Because many users in the target audience for this 
technology—primarily patients with neurodegenerative 
diseases such as amyotrophic lateral sclerosis (ALS)—already 
are experiencing mild dysarthria when their disease is 
diagnosed, it is impractical to consider recording the very 
large corpora (equivalent to several hours of speech) that are 
typically used for unit selection synthesis. Instead, the 
ModelTalker corpora typically comprise less than an hour of 
running speech and are structured to provide an extended form 
of diphone coverage for English. The use of relatively small 
corpora also dictates that the ModelTalker TTS system must 
be able to manipulate intonation and timing in its waveform 
generation stage, although its unit selection logic strives to 
minimize the need to use f0 and timing modification, and users 
are able to turn off signal modification entirely if they wish. 

The first version of the ModelTalker TTS system was a 
participant in the 2005 Blizzard challenge[1]. That system 
performed relatively well in terms of word error rate (WER). 
In overall WER, it was the second best system tested that year. 
However, it performed poorly on the mean opinion score 
(MOS) tasks where it was generally the lowest ranked system. 
Thus, while the synthetic speech produced by ModelTalker 
was very good in intelligibility, it sounded very unnatural. 

We attributed the poor MOS scores for ModelTalker to 
two factors, both of which stemmed from the fact that stimuli 

for the 2005 challenge were generated with full signal 
processing enabled in the system. First, ModelTalker was 
synthesizing both the intonation and timing of all speech. That 
is, rather than use timing and intonation estimates merely as 
targets in the unit search, the system imposed its values via 
PSOLA processing on the output speech. Several deficiencies 
in the prosodic models, particularly with respect to segment 
durations in consonant clusters led to somewhat unnatural 
sounding speech timing. The second problem was that we later 
found several bugs in the implementation of the PSOLA signal 
processing that led to harsh buzzing due to replicating very 
brief segments many times. 

In the time since 2005, the ModelTalker system has 
undergone significant changes. Many of these were related to 
the recording program and process involved in capturing 
acceptable corpora from novice users in a home or clinic 
setting and to a redesign of the synthesizer front end. 
However, within about the last 18 months, we have also 
completely rewritten or significantly revised both our 
waveform synthesis engine and the software that automatically 
constructs a synthesis database from recorded corpora. These 
latter changes were intended, in part, to improve the 
naturalness of ModelTalker voices while maintaining or 
improving intelligibility as well. 

In the following, we describe the current ModelTalker 
TTS system, concentrating on the changes that have been 
made to the database construction and unit selection process. 
Based on the overall Blizzard results, it appears that these 
changes have resulted in improved naturalness. It is more 
difficult to assess progress with regards to intelligibility, but 
certainly the system’s WER is competitive with that of many 
other systems. 

 
 
Figure 1. ModelTalker overall design to guide recording and 
generate a unit selection TTS voice from the recorded corpus. 



2. ModelTalker System 
The overall design of the ModelTalker system is illustrated in 
Figure 1. It comprises three distinct components: 1) the 
ModelTalker Voice Recorder (MTVR) program that is used to 
assist in recording corpora; 2) the ModelTalker Voice 
Constructor (MTVC) program that builds an appropriately 
structured synthesis database from a corpus of recorded 
utterances; and 3) the ModelTalker TTS system itself 
(hereafter, MT) which consists of a DLL or shared object 
library compatible with Windows, Mac OS X, and Linux, a 
SAPI 5.1 interface for Windows systems, and a light-weight 
user interface to the main functions of the primary library. 

 
The MTVR program (Figure 2) is guided by an XML 

control file that lists, among other things, the utterances to be 
recorded and the preferred order in which to record them. This 
control file is updated by MTVR to maintain a record of 
device settings and the recording status of each utterance in 

the corpus. MTVR includes a calibration procedure designed 
to ensure that the recording environment is acceptable, that is, 
that the recording volume is set appropriately, and that the 
background noise level in recordings is sufficiently below that 
of low amplitude speech segments such as /h/ and /f/. The 
calibration procedure also collects statistics on the talker’s 
speech characteristics to set limits on both the speaker-specific 
f0 and speech amplitude range. Once calibrated, MTVR 
guides the user in recording each utterance in the desired 
corpus. First, working from the English gloss, MTVR requests 
a phonetic transcription of the utterance from the MT front 
end. It then displays the written text of the utterance to be 
recorded, and plays an aural prompt of the utterance (either 
synthesized by MT, or a prerecorded prompt if available). 
After this prompt, the user initiates recording with a mouse 
button click or key press, speaks the utterance, and terminates 
recording with another button click or key press. The recorded 
utterance is then analyzed by pitch tracking and a forced 
alignment of the MT transcription to the speech signal. Results 
of these analyses are displayed in the form of meters on the 
MTVR interface as user feedback, and are used to determine if 
the recording was acceptable in amplitude range, f0 range, and 
pronunciation. The latter assessment is based on a confidence 
measure from the HMM forced alignment. If the recorded 
utterance is acceptable in amplitude, f0, and pronunciation, 
MTVR automatically advances to the next utterance and 
repeats this process. If the recording was not acceptable, users 
are advised to rerecord the same utterance. 

While the MTVR program has received a substantial 
amount of the effort involved in updating the ModelTalker 

system, it was not directly used for participation in the 
Blizzard challenge. For that, recordings of the two primary 
Blizzard English corpora were converted to resemble the final 
output of the MTVR program and these were used directly as 
the input to the MTVC program. For the conversion process, 
we first ran a standalone version of the pitch tracker used by 
MTVR on the 16 kHz Blizzard recordings to obtain the pitch 
marking information used by MTVC. This pitch tracker 
locates the onset of each pitch period (or an arbitrary epoch 
during voiceless segments) and associates a binary voicing 
decision flag with each onset marker. The onset markers are 
used for both extracting PSOLA epochs and also for the pitch 
synchronous analysis process used by MTVC. We then used 
MT to phonetically transcribe the English text of each Blizzard 
prompt with the 56-symbol transcription set used by MT. 
These phonetic transcriptions were then force-aligned to the 
Blizzard stimuli using an alignment tool trained on TIMIT 
data. The transcriptions themselves, along with some prosodic 
tags also generated by MT and associated filenames for the 
Blizzard stimuli were finally formatted to resemble the output 
typically derived from MTVR and that is used as the input to 
our MTVC program. 

In the following two sections, we describe in detail the 
analysis process used by MTVC to create a synthesis database 
for MT and the unit selection process used by MT for 
concatenative synthesis. 

2.1. MTVC 

MTVC implements all aspects of the process of converting a 
collection of appropriately formatted recordings to a synthesis 
database for MT. This is achieved through the following 
sequence of steps. 

2.1.1. Feature Extraction 

The first processing stage within MTVC performs acoustic 
feature extraction and builds the primary acoustic parameter 
database using pitch synchronous analyses. For research 
applications and non-commercial testing purposes, the 
acoustic database is an indexed sequence of PSOLA epochs 
extracted from the raw speech files, however other waveform 
encodings (e.g., residual-excited LPC) can also be used. 
Regardless of the method used to encode data for waveform 
synthesis, MTVC also calculates pitch synchronous acoustic 
features for use in training speaker-specific HMMs. The 
primary feature set used by MTVC is based on a principal 
components decomposition of a 32-channel Bark-weighted 
filter bank analysis of each pitch period or voiceless epoch 
(hereafter we refer to the pitch synchronous analysis frames as 
simply frames, or epochs whether it is computed from a voiced 
or voiceless region of the signal). This analysis is similar to a 
standard Mel or Bark cepstrum analysis except that the cosine 
terms of the DCT are replaced with a series of speaker-specific 
eigenvectors. Indeed, there is often considerable similarity 
term-for-term between the eigenvectors and the terms of a 
cosine expansion, although we presume that the eigenvectors 
afford a more optimal speaker-specific solution. 

In addition to (or instead of) the primary Bark-PCA 
analysis, MTVC can calculate several other feature sets. These 
include the time derivatives of the log spectral amplitudes in 
each filter channel, the time derivatives of the PCA 
coefficients, Line Spectral Pairs and their time derivatives, and 
a collection of coefficients based on source features. A control 
file and command line options to MTVC enable/disable each 
possible feature data set. Each active feature set is treated as a 
separate data stream for use in training continuous HMMs. 

 
 
Figure 2. MTVR screen illustrating user feedback meters and 
primary controls. 



2.1.2. HMM Training 

For HMM training, MTVC uses a locally developed library of 
functions that allow monophone models to be trained with 
both continuous and discrete feature streams. The continuous 
acoustic feature streams extracted by MTVC may be 
augmented with several discrete features that capture linguistic 
properties including phonetic context, boundary level, stress, 
etc. Because these discrete linguistic features align at the 
phone or higher (e.g., syllable) level, they would be useless or 
worse if used in monophones with simple left to right state 
transition structures. To make use of the discrete feature 
augmentation, MTVC “grows” parallel-state HMMs as 
illustrated in Figure 3. That is, MTVC begins training with an 
initial strict left to right model (in Figure 3, the initial model 
would have 3 emitting states, but that is configurable) and then 
after a brief initial training period, splits some or all of the 
initial states to form parallel states that share connections with 
logically prior and subsequent states, but do not have mutual 
transitions. The new parallel state configuration is then trained 
some more, and states may then be split again. In the example 
illustrated in Figure 3 there have been two splits at each of 
three left-right serial locations, and there would thus be 27 
distinct possible paths through the HMM. The brown shaded 
nodes with heavier connection arrows in Figure 3 illustrate one 
such path. 

This parallel state architecture along with the use of 
discrete linguistic features affords an alternative to triphones, 
prosodically conditioned models, or both. Rather than having 
separate models (with possibly tied states) to represent a phone 
in one phonetic or prosodic context, this approach represents 
different contexts as different paths through the states of a 
single monophone model. 

One area of continued research in our lab is the question of 
the best splitting algorithm for growing parallel state models, 
and the best stopping criteria. For that reason, the current 
version of MTVC incorporates several splitting algorithms and 
stopping criteria. For the 2010 Blizzard challenge, we tried 
just a few alternatives and screened the result by listening to 
SU sentences to select the result that seemed best. 

MTVC requires an initial alignment of phonetic 
transcriptions to the speech corpus, for which we use a speaker 
independent TIMIT-trained aligner. This alignment 
information is used to estimate the initial HMM parameters 
that are then refined by MTVC using embedded retraining 
with Viterbi alignment along with the growth of the parallel 
state structure as described above. The end result of HMM 
training in MTVC is state-level alignment and indexing of all 
recorded speech using the final parallel-state monophone 
HMMs. 

2.1.3. Data Pruning 

After HMM training is completed, MTVC performs a series of 
checks to detect and eliminate segmentation errors. Of course, 

segmentation errors may be due to either a lack of agreement 
between the phonetic transcript and what was actually spoken, 
or to poorly aligning an accurate transcript. One level of data 
pruning is achieved by rejecting segments that deviate 
significantly (in a statistical sense) on a variety of dimensions 
from overall averages for the segment. MTVC uses duration, 
amplitude, proportion of voiced epochs, and log likelihood as 
dimensions for this pruning process. Segments that are 
identified as outliers on any of these dimensions are flagged as 
such and become unavailable for use in synthesis. 

An additional experimental mode of pruning utilizes an 
HMM-based confidence measure to determine if segments are 
to be flagged. This measure is based on comparison of the 
forced phonetic alignment to an open phoneme recognition 
pass in which all possible phones and phone sequences are 
considered. In this mode, possible phone sequences may 
optionally be conditioned by bi-gram probabilities. This 
experimental confidence measure was used as the primary 
pruning step in generating Blizzard voices. However, more 
recent internal testing suggests that the original statistical 
pruning approach often has greater sensitivity to segmentation 
errors. The MTVC pruning strategy is another area of 
continued study and development in our laboratory. 

2.1.4. Database Construction 

The final stage in MTVC processing is to assemble the data 
files that comprise the synthesis database for MT. The version 
of MT that was used for the Blizzard challenge required that 
the following data files be built by MTVC: 1) a raw PSOLA 
database consisting of every windowed epoch from the 
original corpus; 2) the HMM models that resulted from 
training; 3) A file of statistics that provide duration and pitch 
information as conditioned by prosodic factors; and 4) 
indexing data that provides information about all selectable 
units and the location of the associated waveform epochs 
within the raw PSOLA database. No attempt is made to 
encode or otherwise compress the waveform data. In fact, 
because PSOLA requires segments to be windowed over a 
region amounting to twice the epoch duration, and because we 
store each epoch separately for simplicity, the raw waveform 
database for MT required roughly twice the storage space of 
the original speech data. 

2.2. MT Unit selection & synthesis engine 

The previous version of the unit selection and synthesis engine 
in ModelTalker [1, 2] indexed all biphone sequences in the 
speech corpus and selected segment splice locations within 
each phone of the biphone sequence as an integral part of the 
unit selection Viterbi search. This strategy was derived as a 
natural extension to a diphone synthesis system, wherein there 
are multiple versions of each possible diphone from diverse 
prosodic and segmental contexts and where decisions about 
diphone boundary locations were postponed until synthesis 
time. However, this approach discarded a substantial amount 
of acoustic-phonetic information that was gained in aligning 
speaker-specific HMMs to the speech corpus to estimate 
segmentation boundaries. 

The present version attempts to make better use of all the 
information that is gained in training and aligning speaker-
specific HMMs to the speech corpus by adopting the HMM 
state as the basic concatenation unit. This approach is similar 
in various respects to a number of previously described 
systems (e.g.,[3-5]) that use subphonemic waveform 
concatenation units. The system described by [4] is perhaps 
most similar in specifically defining concatenation units to be 
HMM states, however, there are also a number of significant 

 
 

 
Figure 3. Example HMM structure resulting from MTVC training. 
Brown states connected by dark arrows indicate one possible path 
through the HMM. 



differences. First, the parallel-state HMM architecture used 
here allows context sensitivity to be represented within the 
framework of monophone HMMs rather than triphones. 
Additionally, the clustering approach used to train triphone 
models as described by [4] is an agglutinative process, 
whereas the approach employed here progresses by state 
splitting. Finally, whereas [4] stored only a single prototypic 
region of waveform associated with each HMM state, 
essentially preselecting all units (c.f., [6]) the present approach 
stores all waveform instances associated with each state, 
allowing much longer stretches of originally recorded speech 
to be recovered from the database when appropriate for the 
utterance to be synthesized, but at the expense of a much more 
elaborate on-line selection strategy, more like that described 
by [3]. 

The more or less standard unit selection strategy, e.g., as 
described by [6], involves a Viterbi search over a set of 
candidate units, each of which is assigned a target cost based 
on some set of features and concatenation or join costs 
associated with concatenating units. The Viterbi search then 
finds the specific sequence of units that minimizes the 
combined target and join costs. In MT, the basic concatenation 
units may be as small as the portion of waveform aligned to a 
single HMM state, but with the constraint that we allow at 
most one segment-internal splice. This constraint results in 
dividing each HMM phone model into potentially multiple 
head/tail pairs of units. For example, with a simple 3-state 
model that does not have parallel states, nor allow state 
skipping, there would be two head/tail pairs of units to 
consider: the pair in which the head consisted of only state 1 
and the tail consisted of states 2 and 3, and the pair with head 
consisting of states 1 and 2 and tail consisting of state 3. Thus, 
the possible units for selection are a function of the HMM 
architecture used by MTVC, and the constraint that only one 
segment-internal splice is allowed. MT allows this domain to 
be further constrained by specifying that only certain locations 
within the logical left to right sequence of states may contain 
splices. For instance, if using four-state models without 
skipping or parallel states, one could specify that the only 
acceptable splice location would be between the second and 
third states. This would effectively constrain MT to mimic the 
structure described by [3] in which segments are divided into 
left and right half-phones. 

To organize the search process efficiently, MT first builds 
a search graph based on the desired phone sequence, the HMM 
structure defined from MTVC, and any splice location 
constraints. This graph contains one node for each possible 
head and tail unit as described above. Each node is then 
populated with all possible candidate units for that node, the 
candidates are ranked by target cost, and pruned to at most 
some predefined maximum number of candidates. In the 
version of MT used for the Blizzard challenge, candidates 
were further ranked and pruned into a series of tiers, with the 
top tier corresponding to candidates that were perfect matches 
to the desired target unit in triphone context, stress, boundary 
level, and pitch accent. The prosodic features were based on 
the syllable from which the unit was drawn. The second tier 
level corresponded to units that matched the desired triphone 
context but differed on one or more prosodic features from the 
ideal target. Subsequent tiers ranked candidates per biphone 
context, and so forth. 

Table 1 lists the features used in calculating target costs. 
Most of the features listed in Table 1 are relatively self-
explanatory, however, a few merit further description. For the 
phonetic context, we use a function that provides a phonetic 
distance between any two segments in the MT phonetic 
inventory. The phonetic distances between the left and right 

context segments of the candidate segment and those of the 
target segment context are summed to calculate the target cost 
that is multiplied by the cost weight. We have experimented 
with several phonetic distance metrics including those based 
on perceptual data, linguistic features, and physical acoustic 
properties. For the Blizzard challenge, our distance measure 
was based on the number of shared phonetic features and 
sonority. 

Two other target features are somewhat unique to MT. The 
DHMM features provide observation and transition 
probabilities for each parallel state of a complex HMM given 
discrete contextual factors such as phonetic context, and 
prosodic features. The robustness feature was added 
specifically for use in Blizzard. Segments were flagged as 
robust if they exceed average amplitude and duration for the 
segment by 1 standard deviation or more. This feature was 
added to provide a possible enhancement for noise masking 
conditions. 

Once all candidate units have been attached to nodes of the 
search graph and given target cost values, the graph is 
searched for the path that yields the minimum summed target 
and transition cost normalized by the number of nodes 
traversed in the path (skippable states and segments can result 
in paths of different lengths being considered). The join costs 
associated with this search are listed in Table 2. 

Several of the join costs used by MT are commonly used 
by most if not all unit selection systems. For example, join 
costs associated with the difference in f0, RMS amplitude, and 
spectral structure across the join are very commonly used in 
one form or another. MT uses two forms of spectral join cost. 
One is based on the KL divergence of the PDFs associated 
with the states to be joined. The other is the Euclidean distance 
between the magnitude spectra associated with the acoustic 
analysis frames at the edges of the units. 

Table 1. Features used to calculate target costs. 
 
F0 Weight applied to normalized deviation in 

average segment F0 from the F0 predicted by 
prosodic models. 

Duration Weight applied to normalized deviation in 
segment duration from the duration predicted by 
prosodic model. 

Stress Weight applied to deviations from desired 
segment stress. 

Boundary 
Level 

Weight applied to deviation from desired 
boundary level. 

Phonetic 
Context 

Weight applied to phonetic distance between 
target and candidate context segments.  

Pitch Accent Cost associated with selecting a unit that differs 
in pitch accent from the target. 

DHMM 
Features 

Weight assigned to observation probability of 
candidate state(s) given contextual factors. 

Robustness A weight that favors “robust” segments. 
 

Table 2. Features used to calculate join costs. 
 
F0 Cost associated with F0 discontinuity. 
State PDF Cost applied to the Hellinger Distance (or KL 

Divergence) between state PDFs at a splice point. 
Spectrum Raw spectral discontinuity cost. 
Transition 
Probability 

Cost associated with the normalized state-to-state 
transition probability at a splice. 

RMS Ampl. Amplitude discontinuity cost. 
HMM Path Cost associated with the within-phone path 

probability that would result from a splice. 
Discontinuity Additional cost of selecting any unit out of its 

original acoustic context. 
 



To better represent the dynamic structure across a join, 
most differences are calculated as a composite of the 
difference between the last epoch of the left unit and the epoch 
before the first epoch of the right unit plus the difference 
between the first epoch of the right unit and the epoch after the 
last epoch of the left unit. Thus, the join costs are based on 
differences between epochs of the potential synthetic output 
and the epochs they are replacing in the original recorded 
speech. 

Two additional join costs are noteworthy in the MT 
implementation. One is the path join cost, which is based upon 
the mean spectral difference in states along the paths for the 
two segments in which an internal splice is considered. The 
second is the transition probability cost. For possible splices 
within a segment, this is merely the transition probability 
between the prospective spliced states normalized by the total 
non-self transitions from the left state. Neither of these costs is 
applied to joins at the edges of segments. 

3. Blizzard tasks 
Voices were built using MTVC for the two English hub tasks 
and for two spoke tasks. The standard American English 
ModelTalker dictionary was modified for these tasks to adjust 
for the talkers’ RP pronunciation. About 225 words were 
modified (e.g., been, again, schedule), where significant vowel 
differences could lead to poor segment training and 
unpredictable inaccuracies in phonetic labels. The other 
primary change from the standard AE usage of MT was to 
make the final RX (the MT symbol for the syllable final /r/ 
allophone) segment skippable for both HMM 
training/alignment, and for synthesis. This allowed MTVC to 
skip the RX segment in words where the RP pronunciation 
resulted in simply schwa. Similarly, in the synthesis engine 
search for units, MT was able to explore and use utterances in 
which the nominal RX was skipped. 

For the two spoke tasks ES1 and ES2, we explored a 
number of possible alterations for both the unit selection and 
signal post-processing. Most of these did not perform well and 
were not used in the final voices. For example, an attempt was 
made to generate a peak-enhanced version of the EH1 
inventory for use in task ES2 using procedures similar to those 
described in [7], however preliminary testing of the resulting 
database suggested that it did not improve, and may have 
reduced intelligibility of the voice in both quiet and noise. The 
stimuli finally submitted for this task differed from those 
submitted for the EH1 task only in that the robustness feature 
was heavily weighted for unit selection. 

For the ES1 task, we attempted to map the eigenspace of a 
voice generated with EH1 stimuli onto the eigenspace 
obtained by analysis of the first 100 sentences of the EH2 
stimuli. This mapping did not succeed well enough to 
recognize the resulting voice as that of the EH2 talker and was 
dropped from the challenge. We interpreted the instructions 
for the ES1 task to require that specifically the first 100 
sentences of the ARCTIC inventory must be used to generate 
the voice. Had it been possible to select any 100 sentences 
from the ARCTIC set, we might have attempted a simple unit 
selection inventory for this task. 

4. Results 
Overall, MT was around the middle of the pack for 
intelligibility as measured on SUS listening tasks with about 
15% WER for all listeners and conditions, and a little more 
than 10% WER for native English speakers on the two hub 
tasks. 

On naturalness and similarity measures, the MT voices 
were also in the average to high-average range of the voices 
tested. The mean similarity score for MT voices over all 
conditions was equal to or better than 12 of the 17 systems 
tested. For naturalness, MT voices scored almost exactly in the 
middle of the group, with an MOS that was equal to or better 
than 9 of the 17 systems. 

Of the reference systems in the present challenge, MT is 
most similar to the Festival system in its general design. It is 
thus of interest to compare scores on MT voices with scores 
obtained with Festival. This comparison is presented in Table 
3, which shows the WER scores for Festival and MT on the 
three tasks where MT voices were used in SUS tasks. There 
are two WER scores listed in each cell of Table 1. The score 
over all listeners, and the score for Native English speakers 
only are presented as OVERALL/NATIVE. As Table 3 shows, 
the two system performed comparable in all conditions except 
for Native listeners with voice EH2 where MT seems to have a 
higher WER than Festival. 

 
Table 3. Comparison of Festival and MT on SUS tests. 

 
System Task 

Festival MT 
EH1 0.23/0.108 0.20/0.106 
EH2 0.23/0.113 0.23/0.135 
ES2 0.65/0.59 0.66/0.59 

 

5. Discussion 
The ModelTalker TTS engine and associated database 
construction tool (MTVC) have undergone significant changes 
within the last 18 months. The TTS engine has been 
completely rewritten, and the database construction tool has 
been significantly revised/extended to shift from a 
predominantly biphone-based system using discrete HMMs 
for segmentation to a purer non-uniform unit selection system 
employing a newly developed library for mixed 
continuous/discrete HMM training and alignment. While many 
of the system changes are still experimental and undergoing 
continued testing and revision, the 2010 Blizzard challenge 
seemed an ideal way to assess progress on MT, both compared 
to current state-of-the-art TTS systems, and more importantly, 
to the performance of the previous MT system in the 2005 
Blizzard challenge. 

Arguably the most useful comparison between MT and 
other systems in the present challenge is with the reference 
Festival system. Overall performance of these two systems is 
quite similar on nearly all measures. This is particularly 
encouraging given that we discovered a number of bugs in the 
calculation of target and join costs subsequent to creating 
Blizzard stimuli and believe that the results obtained here for 
MT represent more of a performance floor than ceiling for the 
approach implemented in MT. 

In the 2005 Blizzard challenge, the MT system was 
comparatively strong in intelligibility as measured by SUS 
listening tasks. The MT system did not rank as high in the 
present challenge; however, this difference in rank appears to 
be more due to significant improvements in TTS technology 
generally than to any decline in the intelligibility of the MT 
system. Indeed, the WER scores for MT in the present 
challenge are very comparable to those of the system tested in 
2005, despite the fact that voices in the present challenge were 
recorded by talkers of the British English RP dialect, a variant 
for which MT is not optimized. 



Naturalness was a notable weakness of the MT stimuli 
generated for the 2005 challenge. One of our main goals in 
modifying MT has been to address this weakness, and in this 
regard, we are quite encouraged by the results of the 2010 
challenge, which show that MT voices are competitive with 
other laboratory systems of similar design in both naturalness 
and perceived similarity to the original talker. 

 

6. Conclusions 
Participation in Blizzard 2010 has been a valuable exercise 

that has allowed us to assess and document progress towards 
the next major revision of the ModelTalker system. 
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