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Abstract
This paper details a speech synthesis system developed at NICT
for the Blizzard Challenge 2010. The system depends on an
HMM-based speech synthesis technique that possesses two dis-
tinctive features: HMM training under global-variance con-
straint on the parameter trajectory and trainable mixed excita-
tion for source-filter vocoding. For this year’s entry, we added
some modifications to the system we developed for last year’s
Challenge. The major improvement is on the scheme for the
training of the unvoiced filter that is a component of our mixed
excitation model. Despite the fact that our excitation modelling
has room for further improvement, the official results show that
the system achieves reasonable performance for all assessment
categories.
Index Terms: Blizzard Challenge, statistical parametric speech
synthesis, HMM-based speech synthesis, trajectory HMM,
mixed excitation, residual modelling

1. Introduction
HMM-based speech synthesis [1] has a great advantage over
other leading speech synthesis techniques in terms of flexibil-
ity and adaptability in synthesising speech with various voice
characteristics and speaking styles. However, unnatural speech
produced from statistically estimated acoustic features through
the parametric source-filter model still poses a challenge. At-
tempting to achieve speech quality satisfactory for practical
application, the NICT Speech Synthesis Team has developed
HMM-based synthesis systems, and since 2008 submitted them
to the Blizzard Challenge, though we have a long tradition
and successful history of corpus-based concatenative speech
synthesis [2, 3, 4].

This paper describes the speech synthesis system we sub-
mitted to the Blizzard Challenge 2010 (BC2010). The system
is basically the same as the one we developed for Blizzard Chal-
lenge 2009 [5] and has two original features: HMM modelling
via the technique of trajectory training with embedded global
variance (GV) [6], and state-dependent excitation modelling
based on tree-based state-clustering [7]. The modification on
our BC2010 entry relates to the latter, and we detail it in this
paper.

The remainder of this paper is organised as follows: Sec-
tion 2 briefly mentions BC2010; Section 3 outlines our sub-
mitted system and details how the excitation model training
has been improved, showing results from our preliminary ex-
periment; Section 4 describes in detail how we built voices for

BC2010; Section 5 discusses the results of the official listening
test; and conclusions are given in Section 6.

2. Blizzard Challenge 2010
The Blizzard Challenge is an event that promotes improved un-
derstanding and comparison of different techniques for build-
ing corpus-based speech synthesizers on the same data. The
Challenge consists of building voices from released sets of
speech data and synthesizing a prescribed set of test sentences.
The synthesised sentences are then evaluated through exten-
sive listening tests by volunteers, speech experts and paid native
speakers.

This time, the following corpora were released [8]:

• British English ‘rjs’ corpus: 4 014 utterances (approx.
five hours) of a male speaker released by Phonetic Arts
Ltd., Cambridge, UK

• British English ‘Roger’ corpus: 1 132 utterances (ap-
prox. one hour) of a male speaker released by the Centre
for Speech Technology Research (CSTR) at the Univer-
sity of Edinburgh, UK

• Mandarin Chinese corpus: 5 884 utterances of a fe-
male speaker released by the National Laboratory of
Pattern Recognition, Institute of Automation of Chinese
Academy of Sciences

This year, speech data were available at 16-kHz and 48-kHz
sampling rates for both the English corpora, while the submit-
ted wav-format files must be at 16-kHz sampling rate. Also,
two sets of labels are released: standard Festival utterances,
created at the University of Edinburgh using the multisyn
voice-building tools, and hand-corrected phone labels (based
on the original Festival utterances) given with hand-annotated
prosodic labels. The latter set was kindly provided by iFlyTek
Co., Ltd., China.

Tasks were divided intohub tasksandspoke tasks. The hub
tasks for English speech synthesis were:

• EH1: build a voice from the English ‘rjs’ database

• EH2: build a voice from the English ‘Roger’ database,
optionally using the provided hand-corrected labels

Explanation about the spoke tasks for English and all tasks for
Chinese are omitted since we did not take part in any of these.



3. The NICT system
3.1. Outline

We used the same system for tasks EH1 and EH2. As already
noted, the system is basically the same as the one we developed
for BC2009 [5]. Its unique features are (1) trajectory training
of HMMs under GV constraint [6] and (2) a trainable excitation
model for parametric waveform generation [9][7][10].

The trajectory training [6] provides a unified framework for
training and synthesis using a common criterion in considera-
tion of global variance [11]. We apply this method to refine
the state output probability densities obtained by the conven-
tional HMM training. The GV-constrained trajectory training
optimises the HMM parameters so that the GV of the generated
trajectory is close to a natural one. The generated trajectory is
therefore calculated analytically, even if we consider the GV in
the parameter-generation process.

The excitation model is based on the principle of analysis-
by-synthesis speech coders and consists of optimising state-
dependent filter coefficients. The optimisation is achieved
through iterative minimisation of the difference between syn-
thesised excitation and the residual directly obtained from the
speech corpus through inverse filtering. At its synthesis stage,
the trained filters serve to generate mixed excitation by inputting
a pulse train and white noise into the respective filters. The
states are represented by leaves of a decision tree, which is also
produced within the excitation training.

The modification we made for our BC2010 entry is related
to the latter, i.e., the excitation modelling. In the following sec-
tions, we briefly explain our excitation model and then detail
the improvements added to the conventional model.

3.2. Trainable excitation model

3.2.1. Generation of excitation signals

Figure 1 shows the synthesis stage of our excitation model [9],
where pulse traint(n) and white noisew(n) are passed through
voiced and unvoiced filters,Hv(z) andHu(z). Outputs from
the filters are added together to result in the excitation signal
ee(n). Associated with each HMM state positions, each of the
filters has the following transfer function:
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whereM andL are the respective filter orders. The excitation
signal thereby generated will be input into the vocal-tract filter
of the source-filter vocoder.

3.2.2. Training filters

The model components, filtersHv(z) andHu(z), and impulse
train t(n), are iteratively calculated so as to minimise the error
between residual and synthetic excitation. Figure 2 illustrates
the procedure diagrammatically.

In terms of vectors and matrices, withN being the total
number of samples of the entire database, the filters are de-
termined in a way that minimises the mean squared errorε,
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where G is an N × N matrix containing the impulse
response of the inverse unvoiced filterG(z), hs =

[hs(−M/2) · · ·hs(M/2)]T is the impulse response vector of
the voiced filter for states, and the termAs is the overall pulse
train matrix where only pulse positions belonging to states are
non-zero. In this case, each states = {1, . . . ,S} corresponds
to a different HMM state-position covering the entire database,
after the Viterbi alignment.

Voiced filter coefficients for a given states are obtained by
making∂ε/∂hs = 0, which results in a linear system for the
solution ofhs [9]. On the other hand, the unvoiced filter coeffi-
cients for states, {gs(1), . . . , gs(L)}, and related gain,Ks, are
determined by performing linear prediction (LP) analysis on the
unvoiced excitation signalu(n) = e(n) − v(n) over segments
tagged as states.

Apart from the determination of the filters, the positions
and amplitudes oft(n), {p1, . . . , pZ} and{a1, . . . , aZ}, with
Z being the number of pulses of the entire training database,
are modified in the sense of minimising the mean squared error
of (3). The procedure to determine the positions and ampli-
tudes resembles multipulse excitation linear prediction coding
algorithms [12]. The overall procedure for the design of the fil-
ters and optimisation oft(n) is performed in an interchanging
way. Either the filter coefficient variation or the mean squared
error reduction is applied for the convergence criterion.

The filters vary state by state and the states are defined
according to tree-based clustering using a residual signal ML
criterion [9]. The excitation training process can hence be
enumerated through the following steps [5]: (1) state defini-



tion; (2) residual segment classification according to the de-
fined states and (3) iterative filter calculation for each cluster
of residual segments, using the procedure described in the pre-
vious section.

3.3. Improvement on the NICT BC2009 system

3.3.1. Problem of our conventional system

Synthetic speech from this model, however, contains an exces-
sive amount of noise. During the training process, as in Fig. 2,
the differential signal of the residuale(n) and voiced excitation
estimatev(n) is dealt with as a target signal for determining
the unvoiced filter coefficients. The differential signal, how-
ever, includes an error caused in the statistical optimisation of
the voiced filter response. Since the error contaminates the un-
voiced excitation targetu(n), w(n) is not actuallywhitenedand
the unvoiced filter tends to be overestimated, which causes the
final speech output to be noisy.

Conventionally, we avoided the noisiness by attenuating the
unvoiced component of excitation during the synthesis stage.
This was done mainly by passing the synthesised unvoiced exci-
tation through a high-pass filter (HPF) with a cut-off frequency
of 2 kHz, before it is mixed with the voiced counterpart [9].
This remedy, however, does not remove the root cause of the
noisy speech problem. The total volume of perceptible noise
can certainly be reduced, but while unvoiced information is al-
most entirely eliminated for the range below the HPF cut-off
frequency, the influence of the voiced component estimation er-
ror remains in the range above the frequency.

3.3.2. Periodic/non-periodic decomposition of residual signals

To resolve this problem more effectively, we employ
contamination-free unvoiced-excitation targets for training. The
‘clean’ targets are extracted directly from the residual signals
e(n). The overall training scheme for the unvoiced filter is
shown schematically in Fig. 3. The extraction is achieved with
a periodic component estimator, which is used to separate the
non-periodic component of the residual from the periodic com-
ponent. Periodic component estimation does also introduce a
certain level of error, which directly smears the resulting non-
periodic component. However, the contamination should be
minor because the periodic component is estimatedlocally for
each speech segmentwhereas in the conventional approach the
voiced filter is optimisedover the entire database.

Since the decomposition is part of the offline training pro-
cess, one may employ a somewhat computationally-expensive
approach. We adopt the following sinusoidal model to represent
the periodic (i.e., harmonic) component of the residual:
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ωk = ω0k = 2πf0k and the fundamental frequencyf0. Rep-
resented byJ is the number of harmonics. Obviously, in this
model both the frequency and amplitude of each harmonic are
approximated in a piecewise linear sense. The problem is find-
ing αk, βk, γ andφk that minimise
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Table 1:Number of terminal nodes of trees for each task

task number of terminal nodes
voiced filter unvoiced filter

EH1 83 254
EH2 57 173

wheres(t) is the original signal andw(t) is a window function
whose length is2Nw + 1. The solution described in [13] is
applied to the problem above.

3.3.3. Modified unvoiced-filter training

The state-dependent unvoiced filter coefficients{gs(1), . . . ,
gs(L)} and gainKs can be determined using LP analysis on
the non-periodic component signalu′(n) over segments tagged
as states. The states are defined using the same decision-tree-
based technique of [9]. Thus, a different tree is constructed for
the unvoiced filter additionally to the one for the voiced filter.
During the synthesis stage, a state sequence is first produced us-
ing the ‘unvoiced-filter’ tree and LP coefficients that correspond
to each state are used to generate the unvoiced excitation signal.

4. Voice building for BC2010
4.1. Speech parameter extraction

For both corpora, spectral envelopes andF0s were estimated
from the 16-kHz versions of data with 5-ms frame shifts, using
the STRAIGHT analysis [14] and the Snack Sound Toolkit [15],
respectively. Each of the spectral envelopes was then converted
into the39th-order mel-cepstrum using the Speech Signal Pro-
cessing Toolkit (SPTK) [16].

4.2. Synthesiser training

The released sets of files for BC2010 contain full-context la-
bels for HMM-based speech synthesis. For task EH1, we em-
ployed the labels automatically created at the University of Ed-
inburgh, while for task EH2 we used the hand-corrected labels
with hand-annotated prosodic information that are provided by
iFlyTek Co., Ltd.

Five-state left-to-right no-skip HSMMs for duration,F0

and mel-cepstral coefficients were trained on the basis of the
GV-constrained trajectory training [6]. The procedure of train-
ing HMMs is completely the same as we followed last year.
Details are available in [5].

4.3. Excitation training

The orders of excitation filters wereM = 512 andL = 64.
Residual signals as excitation-training targets were extracted by
passing speech through theinversemel-log-spectrum approx-
imation (MLSA) filter [17], for which the mel-cepstral coef-
ficients extracted above were used. The periodic component
of the residual was estimated on the technique described in
Section 3.3, using20-ms-width window and5-ms frame shift.
Once states were defined as terminal nodes of the trained deci-
sion trees, voiced and unvoiced filters of the excitation model
were calculated using the procedure described in [9]. The num-
ber of terminal nodes (i.e., number of clusters) for each tree is
shown in table 1.

Figure 4 shows typical unvoiced filter responses obtained
from the improved training and the conventional training, for
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Figure 4:Comparing unvoiced filter responses from the conven-
tional (thin black line) and improved (thick red line) training
schemes

both of which the ‘rjs’ corpus was used as training data. These
responses correspond to the second state of the 5-state HMM of
the English sound /i:/ in a certain context. It can be observed
from this figure that spectral energy in the low frequency range
is sufficiently low for the improved training, but not for the con-
ventional training.

4.4. Experiments

We conducted a subjective evaluation to confirm the effective-
ness of the modified framework for unvoiced excitation training.

4.4.1. Conditions and procedure

A listening test was performed with five subjects consisting of
four speech synthesis experts and one with no experience in
speech research. The full 4 014 utterances of the British En-
glish ‘rjs’ corpus were used for training HMMs and the exci-
tation model. The test took the form of an AB forced prefer-
ence, with the utterances of 20 sentences taken from the Bliz-
zard Challenge 2009 test set (the first ten sentences from each
of the ‘news’ and ‘novel’ categories), with the aim of compar-
ing the quality of speech from the conventional and improved
training both with and without the application of the HPF men-
tioned in Section 3.3.1. The test was carried out in a quiet room
with the listeners using headphones.

4.4.2. Results and Discussion

Figure 5 shows the listeners’ preference for each type of test
pair. Since the unvoiced filter is estimated separately from the
voiced filter estimation, clear speech with little noise is syn-
thesised from the excitation model trained with the improved
method. For this reason, as shown in Figure 5(a), speech from
the improved training is preferred by listeners in 97% of all
cases, if no HPF is applied to the synthesised unvoiced exci-
tation signals during synthesis.

In contrast, Figs. 5(b)–(f) show that the HPF is still neces-
sary even for an excitation model from the improved training.
When the HPF is applied for models from the improved and
conventional training, the model from the improved training can
produce slightly better quality speech, although this is not sig-
nificant. Careful listening by the authors revealed that the types
of noise perceptible in the background differ depending on the
approach. With respect to the improved training, it is an in-
termittent type of noise arising segmentally, whereas the noise
from the conventional method is rather stationary. The former
noise is considered to be generated at state boundaries, where
the excitation filter response can change dramatically, because
no dynamic features are used in the current model of excitation.

Based on the experimental results obtained, we decided to
apply the HPF to the system for our BC2010 entry, although
due to the reason above little improvement was expected over
our BC2009 system in the quality of speech synthesised.

5. System performance
5.1. Results and discussion

BC2010 evaluated all the submitted systems under three main
categories: (1) naturalness, (2) similarity to the original speaker
and (3) word error rate (WER) [18]. Since the scales used to
evaluate categories 1 and 2 are ordinal, those scores are given as
medians, and comparisons among the systems are made through
inspection of boxplots. On the other hand, the internal scale
used to evaluate category 3 allows comparison of means [19].

The boxplots that appear in this section for naturalness and
similarity scores represent the opinions of native speakers (stu-
dents) who were paid to perform the listening tests. The plots
showing WER reflect the opinions of all the native speakers who
participated in the evaluation. It should also be noticed that in
all the plots the NICT system corresponds to letter ‘G’ and nat-
ural speech to ‘A’.

Figures 6, 7 and 8 show naturalness scores, similarity scores
and WERs, respectively, for all the systems submitted to tasks
EH1 and EH2. It can be seen that the NICT BC2010 system
performed reasonably well for all the evaluation categories in
both tasks EH1 and EH2. It might not be appropriate compar-
ing the scores between different Blizzard Challenges, but as far
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Figure 6:Naturalness scores for tasks EH1 (top) and EH2 (bot-
tom), assessed by paid native speakers

as task EH2 (ARCTIC subset of ’Roger’) is concerned our sys-
tem achieved better scores in all categories this time than it did
at BC2009. However, the differences are slight and, all in all,
the evaluation scores obtained from the listening test are similar
to those obtained at BC2009. While our new training scheme
has the potential to estimate the unvoiced filter response more
accurately than the conventional training, the HPF was still nec-
essary to reduce the intermittent noise introduced, as already
noted. The use of the filter causes the resulting speech quality to
be close to the quality obtained from the conventional training.

Figure 7: Similarity scores for tasks EH1 (top) and EH2 (bot-
tom), assessed by paid native speakers

6. Conclusions
This paper described the NICT entry for the Blizzard Challenge
2010. Preparing for the Challenge this year, we addressed an
underlying problem of our conventional system and proposed
a new training framework for our mixed excitation modelling.
In this framework the unvoiced excitation signal is generated
through a filter whose coefficients are trained directly from the
non-periodic component of the residual signal.

Although the proposed training is considered to have po-
tential, we discovered that the unvoiced filter response chang-
ing state by state during the synthesis stage causes perceptible



Figure 8: Word error rates for tasks EH1 (top) and EH2 (bot-
tom), assessed by all the native speakers

noise in the synthetic speech. We applied a HPF to attenuate
that noise, but this caused the resulting speech quality to be
close to that obtained from our conventional approach. In or-
der to properly reduce the noise caused by the discontinuities
of the unvoiced filter response at state boundaries, we are now
investigating introduction of dynamic features of the filter re-
sponses. We expect that the new excitation training introduced
in this paper will become effective once the noise is thoroughly
reduced and the application of the HPF becomes unnecessary.

Apart from the excitation modelling, from our participation
in the Blizzard Challenge this year we learned that it is essential
to use ample time for the adjustment of the system after proto-
type voice building. We had to introduce the modification quite
rapidly and had little spare time to tweak the system within the
limited development period. Elaborate adjustments for the fin-
ishing touches, in particular, are vital for comprehensive evalu-
ation such as the Blizzard, where even a single glitch included
in a synthetic sentence, e.g., an impossibly sharp resonance or
excessively-suddenF0 jump, can be fatal.
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