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Abstract

This paper describes the GlottHMM speech synthesis system
for Blizzard Challenge 2011. GlottHMM is a hidden Markov
model (HMM) based speech synthesis system that utilizes glot-
tal inverse filtering for separating the vocal tract and the glottal
source from speech signal and models both components individ-
ually. In this year’s entry, stabilized weighted linear prediction
(SWLP) is used to yield more robust estimates of the vocal tract
filter of the high-pitched female voice. After the inverse filter-
ing, the resulting source signal is parameterized into excitation
features and a glottal flow pulse library, consisting of the variety
of different glottal flow pulses. In the synthesis stage, a unit se-
lection scheme is used for reconstructing the source signal: by
minimizing the target and concatenation costs, best matching
glottal flow pulses are selected from the pulse library in order to
create a natural voice source. Finally, speech is synthesized by
filtering the excitation signal by the vocal tract filter.
Index Terms: speech synthesis, hidden Markov model, glottal
inverse filtering, glottal flow pulse library, unit selection

1. Introduction
GlottHMM text-to-speech (TTS) system [1, 2] is developed
in a collaboration between Aalto University and University of
Helsinki. In this entry, we have used our speech synthesis sys-
tem that emphasizes the importance of the speech production
mechanism, especially in terms of separating the two distinct
parts of it: the glottal excitation and the vocal tract filter.

This year’s challenge was reduced in scale, consisting of
building only one voice from a large database of American En-
glish female speech, designed especially for concatenative syn-
thesis. Although our parametric system was not likely to be
very competitive in this kind of task, we decided to participate
in order to test and report some new ideas, related to vocoder
and HMM modeling. Specifically, we wanted to get listener
feedback on the use of a glottal pulse library for generating the
excitation signal.

Our TTS system was elaborated with a unit selection type
of voice source reconstruction: a glottal flow pulse library is
constructed from the speech corpus, and in synthesis stage, best
matching pulses are selected in order to create a natural voice
source. The glottal inverse filtering method is also refined; sta-
bilized weighted linear prediction (SWLP) is used as a spec-
tral modeling tool in order to yield more robust spectral esti-
mates for the vocal tract filter. SWLP is especially effective for
high-pitch voices in which prominent harmonic peaks may bias
formant estimates computed by conventional spectral modeling

methods such as LPC.
We will first describe our synthesis system, emphasizing

the spectral modeling and the use of glottal flow pulse library.
This is followed by discussion on voice building, analysis on
the results, and conclusions.

2. Overview of the system
Statistical parametric speech synthesis has recently become
very popular due to its flexibility. However, the speech quality
and naturalness of parametric speech synthesizers are usually
inferior compared to state-of-the-art unit selection speech syn-
thesis systems. This degradation is mainly caused by the over-
simplified vocoder techniques and over-smoothing of the gen-
erated speech parameters [3]. Our GlottHMM text-to-speech
(TTS) system tries to overcome especially these problems.

One of the main problems in simplified vocoder techniques
is the modeling of the voice source. Recently, the modeling
of the voice source has been under intensive research, and sev-
eral techniques have been proposed to model the source signal
[4, 5, 6, 7]. However, the accurate modeling of the glottal source
signal has proven to be very difficult. Thus, the use of glottal
flow models has been replaced in several studies by the utiliza-
tion of the estimated glottal source waveformper se[8, 9, 10].

In our recent approach, a glottal source pulse is computed
from real speech and modified for generating the excitation sig-
nal. This has resulted in speech quality that is much better than
that of conventional methods [2, 11]. However, a single pulse
is unable to cover the wide variety of different voice character-
istics. Thus, we have extended the use of a single glottal source
pulse to the use of a library of various pulses [12]. This unit
selection type of source modeling technique enables the recon-
struction of a more natural voice source.

We also use slightly different inverse filtering [13] and spec-
tral modeling approach. Previously, we have used the iterative
adaptive inverse filtering (IAIF) method [14, 15] for estimat-
ing the vocal tract transfer function from the speech signal. In
this work, we have modified the IAIF method to become more
robust by reducing the estimation steps. We also use stabi-
lized weighted linear prediction (SWLP) for estimating the vo-
cal tract filter. SWLP applies more weight on the closed phase
of the glottis, where the vocal tract filter is more prominent.
This reduces the biasing effects of the harmonic peaks on spec-
tral models of the vocal tract.

The overview of the system is shown in Figure 1. In the
training stage, we first decompose the speech signal into the
glottal source signal and the model of the vocal tract filter us-
ing glottal inverse filtering. Then we extract pulses from each
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Figure 1:Overview of the TTS system.

analysis frame and map these pulses according to excitation pa-
rameters. After the analysis stage, the spectral and excitation
parameters are trained in the framework of HMMs. In the syn-
thesis stage, the source signal is generated by selecting appro-
priate pulses from the library according to excitation parame-
ters. Finally, the vocal tract filter is used to filter the excitation
to generate speech.

3. Vocoder architecture
The GlottHMM speech synthesis system is built on a basic
framework of an HMM-based speech synthesis system [16], but
the parametrization and synthesis methods differ from conven-
tional vocoders and are therefore explained in detail below.

3.1. Speech parametrization

The flow chart of the speech parametrization algorithm is shown
in Figure 2. First, the signal is windowed with a rectangular
window to two types of frames at 5-ms intervals: a 25-ms frame
for extracting speech spectrum and energy and a 44-ms frame
for extracting the voice source parameters and the glottal source
pulses. Additionally, for unvoiced segments, a shorter frame
(12.5 ms) is used in order to better capture the transients and
noise bursts. The speech features are presented in Table 1.

The log-energy of the windowed speech signal is evaluated
first, after which glottal inverse filtering is performed in order to
estimate the glottal volume velocity waveform from the speech
signal. The inverse filtering method cancels the effects of the
vocal tract and the lip radiation from the speech signal. A mod-
ified version of the automatic glottal inverse filtering method,
iterative adaptive inverse filtering (IAIF) [14, 15], is utilized.
While the original IAIF method yields accurate estimates of the
voice source signal at its best, in adverse conditions the esti-
mates may vary significantly from frame to frame. In order to
prevent such behavior, we have reduced the number of estima-
tion steps in the modified IAIF method from two to one. Thus,
the modified IAIF method yields more robust estimates of the
glottal flow, although the estimates may not be as detailed as
with the original IAIF method. The modified IAIF method is
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Figure 2: Illustration of the parametrization stage. The speech
signal s(n) is decomposed into the glottal source signalg(n)
and the all-pole model of the vocal tractV (z) using the
modified IAIF method. The glottal source signal is further
parametrized into the all-pole model of the voice sourceG(z),
the fundamental frequencyF0, the harmonic-to-noise ratio
(HNR), and the differences of the first ten harmonic magnitudes.
A glottal source pulse library is constructed from the extracted
glottal flow pulses and the corresponding voice source parame-
ters.

illustrated in Figure 3.
In addition, stabilized weighted linear prediction (SWLP)

[17] is used for spectral modeling in the modified IAIF method.
SWLP was developed from weighted linear prediction (WLP)
[18], but, differently from WLP, the filter stability is always
guaranteed in SWLP, hence making its use justified in applica-
tions where all-pole synthesis is needed. In SWLP analysis, the
autocorrelation is weighted by the short time energy window of
the signal, thus emphasizing high energy parts. SWLP has two
benefits compared to conventional linear prediction (LP) anal-
ysis. First, SWLP spectrum is less distracted by the harmonics
of the excitation signal since the high energy parts are located
in the glottal closed phase instants, thus giving less weight to
the excitation instants. For the same reason, the inverse filter-
ing is more accurate as the excitation is given less weight when
determining the vocal tract spectrum. Thus, the spectral tilt of
the excitation has less effects on the vocal tract spectrum, and
the separation between the vocal tract spectrum and the voice
source is more accurate.

The outputs of the modified IAIF algorithm are the esti-
mated glottal flow signal and the all-pole model of the vocal
tract. In order to capture the variations in the glottal flow due to
different phonation or speaking style, the spectral envelope of
the excitation signal is further parametrized with conventional
linear predictive coding (LPC). This spectral model of the glot-
tal excitation captures mainly the spectral tilt, but also the more
detailed spectral structure of the source.
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Figure 3:Block diagram of the modified IAIF method.

The fundamental frequency is estimated from the glottal
flow signal with the autocorrelation method. In order to eval-
uate the degree of voicing in the glottal flow signal, a harmonic-
to-noise ratio (HNR) is determined based on the ratio between
the upper and lower smoothed spectral envelopes (defined by
the harmonic peaks and interharmonic valleys, respectively) and
averaged across five frequency bands according to the equiva-
lent rectangular bandwidth (ERB) scale [19]. In addition, the
magnitude difference of the first ten harmonic peaks compared
to the first harmonic magnitude of the excitation spectrum is
parametrized to describe the low-frequency source spectrum
more accurately.

LPC models of the vocal tract and the voice source are fur-
ther converted to line spectral frequencies (LSFs) [20], which
provides stability [20] and low spectral distortion [21]. In case
of unvoiced speech, conventional LPC is used to evaluate the
spectral model of speech. In order to preemptively alleviate
for the over-smoothing of the vocal tract parameters in HMM
training, a formant enhancement technique [22] is used in the
parametrization stage instead of post-filtering after the parame-
ter generation.

For constructing a glottal source pulse library, pulses are
extracted from the differentiated glottal volume velocity signal.
First, glottal closure instants (GCIs) are determined by search-
ing for the minima of the glottal source signal at fundamen-
tal period intervals. This simple GCI detection method, when
applied to the glottal inverse filtered signal, works sufficiently

Table 1: Speech features and the number of parameters.

Feature Parameters per frame
Fundamental frequency 1
Energy 1
Harmonic-to-noise ratio 5
Harmonic magnitudes 10
Voice source spectr. (filter ord.) 7
Vocal tract spectr. (filter ord.) 25

well for the purpose. After the GCI detection, each complete
two-period glottal source segment is extracted and windowed
with the Hann window. The energy of each pulse is normal-
ized and the pulses are stored to the pulse library. All the voice
source parameters (all parameters in Table 1 except the vocal
tract spectrum) are also stored to the library in order to describe
the characteristics of each pulse. In addition, a down-sampled
constant length (10 ms) version of each pulse is stored to enable
the evaluation of the concatenation cost in the synthesis stage.

3.2. Synthesis

The flow chart of the synthesis stage is shown in Figure 4. The
excitation signal consists of voiced and unvoiced sound sources.
The voiced excitation is constructed by utilizing a unit selection
scheme for the source signal: appropriate glottal flow pulses are
selected from the glottal flow pulse library in order to generate a
natural voice source signal. The pulses are selected by minimiz-
ing the joint cost, consisting of target and concatenation costs.
The target cost is composed of the root mean square (RMS)
error between the voice source parameters of the pulse and the
ones generated by the HMMs. Individual weights for each voice
source parameter are experimentally set. The target cost assures
that an appropriate pulse is selected with desired voice source
characteristics. The concatenation cost is composed of the RMS
error between the down-sampled pulse waveforms of the con-
secutive pulses in each full voiced section. Minimizing the con-
catenation cost ensures that the adjacent pulse waveforms do not
differ substantially from each other, possibly producing abrupt
changes in the excitation signal leading to a harsh voice quality.
The best matching pulses, in terms of target and concatenation
costs are selected for each voiced section at a time, and the pro-
cess is optimized with the Viterbi search among all pulses. Indi-
vidual weights for the target and concatenation costs are tuned
by hand.

After selecting the pulses for a voiced sections, the pulses
are scaled in amplitude according to the energy measure given
by the HMMs. Then, the pulses are overlap-added according
to F0 values in order to create a continuous voiced excitation.
Since the fundamental frequency is included in the target cost,
pulses with approximately correct fundamental period will be
chosen, and no further processing of the pulses is necessary.

The unvoiced excitation is composed of white noise, whose
gain is determined according to the energy measure generated
by the HMMs. The voiced and unvoiced excitations are then
combined and filtered with the vocal tract filter for generating
speech.

4. Voice building
4.1. Front end

Perhaps the most interesting aspect of this year’s challenge
was the unconventional labeling provided with the speech data.
The annotation consisted of so called lessemes [23], phonemes
augmented with detailed information about speech melody and
other phonetic details. As the voice talent was familiar with
this notation and the text was annotated prior to reading, the ac-
curacy ofF0 movement labeling was high above normal TTS
level.

While the authors of the notation had used lessemes as
atomic units in TTS, it seemed sensible to break the features
apart for use in a conventional context-dependent label format.
In addition to lesseme features, typical positional and quantita-
tive features were extracted, as well as unigram probabilities of
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Figure 4: Illustration of the synthesis stage. The voiced sound
source is composed of glottal source pulses selected from the
pulse library. Unvoiced excitation is composed of white noise.
The excitation signals are combined and filtered with the vocal
tract filter V (z) to generate speech.

the words to help with rhythm and phrasing.

4.2. Feature extraction

Parameters described in Table 1 were extracted along with their
delta and delta-delta features. Additionally, a pulse library of
approximately 15000 pulses was constructed from 20 selected
utterances with richF0 movement and phonetic content. Exam-
ples of the pulse waveforms are shown in Figure 5.

4.3. HMM training

Due to some failed experiments and time constraints, only 3000
randomly selected sentences were used in training the final
voice. The models, consisting of seven independent streams,
were trained with the standard HTS 2.1 recipe [16] except for
changes described below:

4.3.1. Explicit voicing

Having multiple independent streams provides for efficient
clustering but introduces problems due to lack of coherence be-
tween streams, resulting in fuzzy voicing boundaries and arte-
facts noted in the previous challenge [11]. We tried to alleviate
this problem by introducing explicit state-wise voicing infor-
mation to contextual labels, to be used in the final clustering

step for all streams exceptF0. By changing the question “Is
the current phoneme voiced?” to “Is the current state voiced in
the training data?” we hoped to achieve crisper voicing bound-
aries and less audible artefacts in the final voice. In parameter
generation,F0 prediction is first performed normally, and the
predicted voicing is considered for other streams.

4.3.2. Reducing over-smoothing by extrapolation

It is well known that the effect of dynamic features in parameter
generation is not considered in ML-based HMM training, caus-
ing over-smoothing in generated parameter trajectories. This
problem has been largely solved by introducing minimum gen-
eration error (MGE) criterion [24] to HMM training. However
the MGE training method is computationally intensive and, im-
portantly for many, is not included in the public HTS frame-
work.

In this year’s challenge, we experimented with MGE in-
spired method for trajectory sharpening with the available tools.
In this method, first, an estimate of the magnitude and direc-
tion of over-smoothing for each model is achieved by training
an over-smoothed model set with generated parameters and us-
ing the difference between the original and the over-smoothed
model set to apply a proper amount of sharpening for each
model.

The process involves alignment of the training data, gen-
erating the training data with the original state alignments, and
re-estimation of the original models with the generated param-
eters. Then, at synthesis stage, the model interpolation frame-
work in HTS engine is applied with over-smoothed and original
models as reference points, to extrapolate away from the over-
smoothed models. In the current voice, extrapolation ratios
for each parameter type were tuned by hand. Informally, this
method seems to provide more detailed trajectories and gener-
ally better speech quality than parameter generation considering
global variance (GV), but like GV, is subject to artefacts if ap-
plied too strongly.

4.4. The resulting voice

The submitted voice was informally assessed and found gener-
ally crisp and smooth but somewhat inconsistent, with some ut-
terances containing unit selection type artefacts and hoarseness,
due to pulse selection errors. Also, unexplained low frequency
clicks occurred on some contexts which could not be fixed be-
fore the deadline.

0 2 4 6 8 10 12 14
Time (ms)

Figure 5: Windowed two-period glottal volume velocity pulse
derivatives from the pulse library of the American English fe-
male speaker extracted with the automatic speech parametriza-
tion method.
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5. Results and discussion
This year’s submissions were mostly very good quality due to
large, well-annotated database, and the differences between sys-
tems were small. As usual, with many variables, analysis of our
own results is difficult. Compared to last year’s English hub
task, this year’s results were slightly worse, not being signif-
icantly better than the HMM-based benchmark voice (system
C) on any of the measured aspects when all listeners were con-
sidered. Closer examination revealed that, for some reason, es-
pecially the paid listeners judged our system harshly, while the
online listeners preferred our system to system C.

However, current task was a female voice, difficult for our
inverse filtering based approach, so it is better to relate our per-
formance with our Blizzard Challenge 2010 mandarin female
voice. Here, in reference to HMM benchmark voice, we see
clear improvement on speaker similarity, likely due to the new
pulse library method as well as SWLP parameterization. Ap-
parently, the similarity is especially strong when reading nov-
els, as seen in Figure 6, where our entry is labeled with letter
M. Improvements in HMM modeling and shorter window for
unvoiced LSFs seemed to have benefited the intelligibility of
our system, which is now in line with other parametric systems.
On the downside, naturalness was not improved, probably at-
tributable to the pulse selection artefacts.

6. Conclusions
In this paper, we have described the novel aspects of the
GlottHMM system for the Blizzard challenge 2011, most no-
tably, the use of glottal pulse library in a unit selection frame-
work and the weighted linear prediction based speech parame-
terization.

While the performance of our submitted voice was not ex-
actly stellar, some optimism is warranted. Progress on modeling
female speech was noted comparing our entries from previous
and current challenges. Also, most of the methods described

in this paper were tested for the first time in this challenge in
a rather immature state. Better results can be expected based
on further experimentation on the pulse library and vocal tract
parameterization.
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