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Abstract 

This paper describes I2R‟s submission to the Blizzard 

Challenge 2011 speech synthesis evaluation. This is our fourth 

participation in the challenge. In this paper, we will describe 

our main approaches to building the required voices. We will 

describe our definitions of the acoustic, prosodic and linguistic 

parameters, procedure of candidate unit selection, components 

of cost functions, etc. Finally, we will also present the results 

of the listening test conducted.  

 

Index Terms: speech synthesis, HMM-based synthesis, unit 

selection, and cost function. 

 

1. Introduction 

The Blizzard Challenge [1-3] provides an excellent platform 

for speech synthesis researchers to evaluate one another‟s 

corpus-based speech synthesis technology using the same 

database. This year, only English speech synthesis systems are 

evaluated. 

There are two tasks in this year‟s Blizzard Challenge, 

namely hub task EH1 and spoke task ES1. Both of them are 

for English and use databases by the same speaker, „Nancy‟. 

This speaker is a female professional speaker with US accent. 

About 12,000 utterances from this speaker are available. These 

utterances are provided in a sample rate of 16 kHz. Apart from 

these files, the original studio recording files with higher 

sampling rates are also available. 

A set of annotation data were also provided with the 

training data in the Lesseme format. Lessemes are symbolic 

sound representations derived from Lessac‟s phonosensory 

symbols, linking guidelines and intonational information. 

Hence, co-articulation and prosodic features are notated. 

During the recording, the Lesseme annotation is shown to the 

speaker. Hence, sound-annotation correspondence may be 

achieved.   

In EH1, entry systems are required to generate synthetic 

speech on novel, news, reportorial, and semantically 

unpredictable sentences (SUS). In ES1, it is required to 

synthesize sentences comprising of names and addresses. 

 

2. Overview of Our Approach 

Over the years, unit-selection based waveform concatenation 

[4] and hidden Markov model (HMM) based parametric 

synthesis [5] are two popular approaches for corpus-based 

speech synthesis. Although the unit-selection approach often 

provides natural and high quality synthesis outputs, there may 

be artifacts during waveform concatenation on small 

databases. Compared to the unit-selection approach, only a 

small amount of training data is required for the HMM based 

parametric approach to generate synthesis outputs of 

acceptable quality. Nevertheless, since the HMM based 

approach relies on source-filter modeling for output 

generation, the synthesized speech sounds vocoded and 

robotic.  

This year, the I2R entry adopts unit-selection based 

approach as our major method for synthesis. However, we 

employ the HMM-based parametric synthesis approach to 

assist in the unit-selection process, so as to capture the high 

quality and smooth continuity in real speech with smooth 

trajectory. This is similar to [6, 7]. In particular, based on the 

parameter trajectory generated from the HMM-based synthesis 

system, the inventory of waveform candidates is evaluated and 

an optimal subset of candidates is chosen. 

In the following sections, we will first introduce the 

prosody model, the candidate set selection method, and the 

unit-selection process. Then we will look at the evaluation 

result, and finally draw the conclusion.   

3. Prosody Model 

We have used the same prosody models as we did last year 

[8].  In this part, we describe how the prosody model of the 

speech synthesis system was built.  

3.1. The Acoustic Parameters 

We first calculated a set of parameters that describe the 

spectral and prosodic features of each HMM state as well as 

frame boundaries. These parameters are chosen to include all 

the possible parameters in our consideration. The main values 

that we capture include the statistical values of each individual 

HMM state as well as the values of boundary (start and end) 

frames of the unit. The initial parameter set that we used 

consists of the following values:  

 Spectral features: MFCC mean for the 3 HMM states, 

MFCC for boundary frames. 

 Pitch features: Mean, maximum, minimum, and range of 

pitch values and pitch derivative values for 3 HMM 

states, and boundary frames. 

 Duration features: Durations of the 3 states, duration of 

the unit. 

 Energy features: Mean energy of frames in the 3 HMM 

states, and boundary frames. 

The defined parameter set forms a long vector (with a 

dimension of 308), which contains a lot of redundancy.  

Therefore, we use the principal component analysis approach 

to reduce the dimension. The dimensionally-reduced vector is 

considered a compact form of representation of the prosodic 

and spectral features of the unit. Finally, we have a 40-

dimensional vector. 

3.2. The Prosodic Parameters 

The acoustic parameters define both spectral and prosodic 

information. However, because more parameters are required 



to convey spectral information as compared to prosodic 

information, prosodic information is actually less prominent in 

the acoustic vector. Nevertheless, we still need a set of 

prosodic parameters to emphasize the prosodic properties in 

speech. The prosodic parameters for each unit consist of the 

following: 

 Pitch mean of the unit 

 Duration of the unit 

 Energy mean of the unit 

 Pitch range of the unit. 

3.3. Linguistic Features 

Linguistic features are derived from the input text. They are 

used for predicting the acoustic parameters. Even though the 

training data come along with a set of annotation in the form 

of Lessemes, the annotation was not used in our system due to 

the difficulty to make it compatible with some of our 

components. We used Festival to analyze the text and generate 

the utterance structure for each speech file. The defined 

linguistic feature set is similar to that used in the HTS system 

[9].  

We have derived the following linguistic features from the 

utterance files (the number of parameters are given in 

brackets): 

 Current and context units: phone identities of current 

unit, the previous 2 and next 2 units, phone positions 

(counting forward and backward) in the syllable. (7) 

 Syllable information: Stress, accent, length of the 

previous, current and next syllables. (9)  

 Syllable position information: syllable position in word 

and phrase, stressed syllable position in phrase, accented 

syllable position in phrase, distance from the stressed 

syllable, distance from the accented syllable, and name 

of the vowel in the syllable. (13) 

 Word information: length and part-of-speech of the 

previous word, current word and next word, position of 

the word in phrase. (12). 

 Phrase information: Lengths (in number of words and 

syllables) of previous phrase, current phrase and next 

phrase, position of the current phrase in major phrase, 

boundary tone of the current phase. (9) 

 Utterance information: Lengths in number of syllables, 

words and phrases. (3)  

Putting all the features together, we form an input 

linguistic feature vector of 53 elements. 

3.4. Parameter Prediction 

The acoustic parameter prediction process calculates the 

parameters from the linguistic features. The prediction can be 

represented with the following formula: 

 )(XFy ii   (1) 

where 
iy is the i-th parameter for  the unit and X is the 

linguistic feature vector for the unit. 

In our system, the linguistic features are the predictors and 

the acoustic and prosodic parameters are the responses. We 

build our models using the CART [10] approach. Each 

individual parameter is predicted separately with a CART tree. 

  

4. Candidate Set Selection 

During synthesis, there is a large set of candidate units in the 

unit database for each target unit. Therefore, to improve the 

synthesis speed, it is important to reduce the candidate set first. 

In our system, HMM-based synthesis method was used to 

determine a candidate set for each unit. 

4.1. Generation of HMM Parameter Trajectory 

Our HMM-based synthesis system is based on the HTS 

speaker-dependent training demo released in [11]. There are 

12,095 sentences of training data available for the hub task 

EH1. To quickly train a HMM-based synthesis system, we use 

the first 1,000 sentences as our training set. 

Feature extraction is first done to capture the spectrum, 

fundamental frequency (F0) and aperiodicity information. 

STRAIGHT [12] is used for analysis purpose. The resultant 

STRAIGHT spectrum is then converted to 39-th order line 

spectral pair (LSP) and combined with log gain and five-band 

aperiodicity values. These are the static features. LSP is 

employed for its efficiency for quantization and stability after 

interpolation [13]. Dynamic features, i.e. the delta and the 

delta-delta features are also used. These feature values are 

modeled by Multi-space probability distribution HMM (MSD-

HMM) [14]. The feature vector finally consists of 138 

dimensions, split into five streams, one stream for spectrum, 

another stream for band aperiodicity and three streams for log 

F0. The frame shift is 5 ms. 

The training process follows the standard maximum-

likelihood procedure as in [11]. Duration models and full-

context decision trees are built. Finally, the parameters of the 

leaf nodes in the tree structures are extracted for candidate unit 

set selection. 

4.2. Selection of Waveform Candidates 

Based on the generated speech parameter sequences, we select 

a subset of waveform candidates for subsequent unit selection 

in the baseline synthesis system. This significantly reduces the 

computational cost, rather than searching the entire inventory. 

Given a text input, the generated sequence from HMM 

synthesis acts as the target unit. On the other hand, the entire 

inventory is divided into a number of subsets defined by the 

HMM clusters obtained from the HMM synthesis system. 

Each cluster collects waveform candidates having similar 

segmental and prosodic context. By calculating the Kullback-

Leibler divergence (KLD) [15] between HMMs of every 

possible pair of the target unit and these clusters, the nearest 

subset of waveforms is determined. This is done by finding the 

waveform cluster with minimum KLD. Note that only models 

comprising spectrum, log F0 and band aperiodicity 

information are used for KLD calculation. Duration models 

are not involved. There are altogether 776 clusters found. 

Let
p  and

q  be the HMMs of the target unit and one 

cluster, respectively. For our case, 
p  and

q  are single-

mixture Gaussian distributions, consisting of S states. For 

simplicity, it is assumed that all transitional probabilities 

between model states are the same. The KLD becomes 
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where 
sp,  denotes state s of 

p .   and tr  are the matrix 

determinant and the trace operation respectively. N is the 

number of dimensions of 
p  and

q .  
m and 

m  are the 

mean vector and covariance matrix of 
m  respectively. 

During synthesis, the above KLD calculation is performed 

for every target unit in the input text. In order to speed up, the 

KLD values between all possible cluster pairs are computed in 

advance and stored. Hence, any KLD between a target unit 

and a cluster can be looked up and the subset of waveform 

candidates is easily retrieved. 

 

5. Unit Selection 

The unit-selection method is used in all the voices that we 

have built. In this section, we describe how we define the cost 

function.  

The unit-selection process is based on the cost function 

that consists of two parts (1) a target cost to measure the 

difference between the target unit and the candidate unit. (2) a 

join cost to measure the acoustic smoothness between the 

concatenated units. 

Our target cost further consists of three parts (1) the cost 

of acoustic parameters, (2) the cost of prosodic parameters, 

and (3) the cost of context linguistic features. The target cost 

tc  is defined as the following: 

 
tltltptptatat cwcwcwc                  (4) 

where, 
tac ,

tpc and 
tlc  are the cost of acoustic parameters, 

prosodic parameters and linguistic features respectively, and 

taw  , 
tpw  and 

tlw represent their corresponding weights.  

The reason why we use three cost components here is that 

each of them alone is not sufficient to describe the target cost. 

The cost of the linguistic feature is to ensure the general 

spectral and prosodic accuracy of the candidate unit. Units 

with wrong pronunciation labels, which are generated due to 

grapheme-to-pronunciation mistakes, can also be excluded by 

linguistic cost. However, due to the varsity of speech, using 

linguistic cost on its own may lead to extreme cases of 

abnormal spectrum and prosody too easily. The use of cost of 

acoustic parameters can avoid the selection of such extreme 

cases, because statistical models favor average values. The use 

of prosodic cost is to emphasize the importance of prosodic 

features. 

The total cost c is calculated with the following function. 
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where n is number of units in the sequence, ct(i) is the target 

cost of unit i,  cj(i) is the join cost between unit i-1 and unit i, 

and
tw  and 

jw  are weights for the target cost and join cost 

respectively. 

The best unit sequence is determined by searching for a 

best path among the candidate unit lattice to minimize the total 

cost of the selected sequence. Viterbi algorithm is used to find 

the best sequence. The weights in the cost function are 

manually tuned.  

6. Evaluation Results 

The following presents some of the major evaluation results 

for our system in this year‟s Blizzard Challenge tasks. Our 

system is denoted as „K‟, whereas system A, B, C and D are 

benchmark systems. System A refers to the real speech. 

System B is the Festival unit-selection system. System C and 

D are the HTS systems using similar techniques such as the 

HTS entry in Blizzard Challenge 2005 with 16 kHz and 48 

kHz sampling rates respectively. 
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Figure 1: MOS for naturalness of all data types. 
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Figure 2: MOS for naturalness of all data types, 

collected from native speakers. 

Concerning the naturalness, Fig. 1 shows the performance 

of our system for all data types. With our unit-selection 

synthesis system which is assisted by HMM-generated 

trajectory, the median of mean opinion score (MOS) is 3. This 

indicates that our system K generates output speech with high 

levels of naturalness. Compared to the three benchmark 



systems (B, C and D), our system K shows significantly better 

performance, with reference to the Wilcoxon‟s signed rank 

tests. 

Based on the MOS results on novel, news and reportorial 

testing texts (with all medians equal 3), it is found that the 

performance of our system is roughly the same across different 

speech types. 

The naturalness of our system outputs is evaluated by both 

native and non-native English speakers. Fig. 2 and 3 are the 

MOS results. The result from native speakers is not as good as 

the result from non-native speakers. This indicates that there 

are probably some detailed characteristics in the output that 

are not natural enough, where only native speakers are able to 

identify. 
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Figure 3: MOS for naturalness of all data types, 

collected from non-native speakers. 
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Figure 4: MOS for similarity of all data types. 

Fig. 4 shows the similarity performance. This is for all data 

types and all listeners. The median of the MOS for our system 

K is 3. This indicates that our system preserves and generates 

the original speaker‟s characteristics well. According to the 

Wilcoxon‟s signed rank tests, our system is found to have a 

similarity performance paralleled to the benchmark system B 

from Festival. 

If different speech types are compared, it is found that our 

system performs slightly better in capturing the original 

speaker‟s similarity for the news database as compared to the 

novel one. 
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Figure 5: WER of all data types and all listeners. 

Fig. 5 presents the system performances on intelligibility 

in the form of the error rates (WER) for all data types and all 

listeners. The measured WER under different categories are 

roughly the same, being in the middle-to-high range among all 

the systems. 

Comparing our system with benchmark systems B, C and 

D, it is found that the two HMM-based systems (C and D) 

generally perform better in intelligibility, over system B and 

K, which are unit-selection based. 

From the evaluation results, we noticed that our system 

works almost equally well for different types of text. There are 

still some aspects to improve: (1) We used Festival‟s text 

analysis component of the default voice as our front end. The 

analysis result contains some pronunciation errors for some 

words. We believe that improving the text analysis part will 

help to improve the overall speech quality of our system 

further. (2) Weights in cost functions are still manually tuned. 

Due to time constraints, the tunings were yet to be optimized. 

(3) We have used the HMM-based synthesis method to assist 

us in unit selection. We believe that we need more tests to take 

optimal advantage of this in our system.   

7. Conclusion 

This paper has described our speech synthesis approach for the 

Blizzard Challenge 2011. We have used the HMM-based 

approach to select the candidate unit set in a unit-selection 

based system. The evaluation shows that the performance of 

our system is equally good with different testing sets in terms 

of both naturalness and similarity. 

 



References 

[1] R. Clark, M. Podsiadlo, M. Fraser, C.  Mayo, S. King, 

Statistical Analysis of the Blizzard Challenge 2007 

Listening Test Results, Proc. Blizzard Challenge 

Workshop, 2007, Bonn, Germany. 

[2] S. King, V. Karaiskos, “The blizzard Challenge 2009.” 

Blizzard Challenge Workshop, Sept. 2009. 

[3] A. W. Black and K. Tokuda, “The Blizzard Challenge - 

2005: Evaluating corpus-based speech synthesis on 

common datasets,” in Proc Interspeech 2005, Lisbon, 

2005. 

[4] A. W. Black and P. Taylor, “Automatically clustering 

similar units for unit selection in speech synthesis,” Proc. 

Eurospeech, pp. 601-604, Sep. 1997. 

[5] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and 

T. Kitamura, "Speech parameter generation algorithms 

for HMM-based speech synthesis,” in Proc. ICASSP, pp. 

1315-1318, Jun. 2000. 

[6] Y. Jiang, Z.-H. Ling, M. Lei, C.-C. Wang, L. Heng, Y. 

Hu, L.-R. Dai, and R.-H. Wang, “The USTC system for 

Blizzard Challenge 2010,” in Proc. Blizzard Challenge 

Workshop, Sep. 2010. 

[7] Y. Qian, Z.-J. Yan, Y.-J. Wu, F. K. Soong, G. Zhang, and 

L. Wang, “An HMM trajectory tiling (HTT) approach to 

high quality TTS – Microsoft entry to Blizzard Challenge 

2010,” in Proc. Blizzard Challenge Workshop, Sep. 

2010. 

[8] M. Dong, P. Chan, L Cen, B. Ma, H. Li, “I2R Text-to-

Speech System for Blizzard Challenge 2010”, Blizzard 

Challenge Workshop, Sept. 2010. 

[9] K. Tokuda, H. Zen, A.W. Black, “An HMM-based 

Speech Synthesis System Applied to English,” in Proc. of 

2002 IEEE SSW, Sept. 2002. 

[10] L. Breiman, , J. H. Friedman, R. A. Olshen, and C. J. 

Stone, “Classification and Regression Trees”. Monterey, 

Calif., U.S.A.: Wadsworth, Inc., 1984. 

[11] K. Tokuda, K. Oura, K. Hashimoto, S. Shiota, H. Zen, J. 

Yamagishi, T. Toda, T. Nose, S. Sako, and A. W. Black, 

(2011, Jul. 28) HMM-based speech synthesis system 

(HTS) [Online]. Available: http://hts.sp.nitech.ac.jp/ 

[12] H. Kawahara, (2011, Jul. 28) STRAIGHT trial page. 

[Online]. Available: http://www.wakayama-

u.ac.jp/~kawahara/STRAIGHTtrial/ 

[13] F. K. Soong and B.-H. Juang, “Line spectrum pair (LSP) 

and speech data compression,” in Proc. ICASSP, pp. 37-

40, Mar. 1984. 

[14] K. Tokuda, T. Mausko, N. Miyazaki, and T. Kobayashi, 

“Multi-space probability distribution HMM,” IEICE 

Trans. Inf. & Syst., vol. E85-D, pp. 455-464, Mar. 2002. 

[15] S. K. Zhou and R. Chellappa, “Kullback-Leibler distance 

between two Gaussian densities in reproducing kernel 

Hilbert space,” in Proc. ISIT, Jun. 2004. 

 

 

 

 

http://hts.sp.nitech.ac.jp/
http://www.wakayama-u.ac.jp/~kawahara
http://www.wakayama-u.ac.jp/~kawahara

