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Abstract
This paper describes a hidden Markov model (HMM) based
speech synthesis system developed for the Blizzard Challenge
2011. In the Blizzard Challenge 2011, we focused on the train-
ing algorithm for HMM-based speech synthesis systems. To
alleviate the local maxima problems in the maximum likeli-
hood estimation, we apply the deterministic annealing expecta-
tion maximization (DAEM) algorithm for training HMMs. By
using the DAEM algorithm, the reliable acoustic model param-
eters can be estimated. In addition, we apply stepwise model
selection to the model training. The decision tree based con-
text clustering is used as model selection in HMM-based speech
synthesis. By using the stepwise model selection method, de-
cision trees are gradually changed from small trees into large
trees for estimating reliable acoustic models. Subjective evalu-
ation results show that the system synthesized the high intelli-
gible speech.
Index Terms: speech synthesis, hidden Markov model, deter-
ministic annealing, model structure

1. Introduction
A statistical parametric speech synthesis system based on hid-
den Markov models (HMMs) was recently developed. In
HMM-based speech synthesis, the spectrum, excitation, and du-
ration of speech are simultaneously modeled by HMMs, and
speech parameter sequences are generated from the HMMs
themselves [1]. Compared to other synthesis methods, this
method has several advantages, 1) under its statistical training
framework, it can learn statistical properties of speakers, speak-
ing styles [2], emotions [3], etc,, from the speech corpus; 2)
many techniques developed for HMM-based speech recognition
can be applied to speech synthesis [4, 5]; 3) voice characteris-
tics of synthesized speech can be easily controlled by modifying
acoustic statistics of HMMs [6, 7].

Since acoustic models affect the quality of synthesized
speech, the model estimation is one of the most important prob-
lem in statistical parametric speech synthesis. Therefore, the
appropriate training algorithm is required to estimate the reli-
able model parameters. The maximum likelihood (ML) crite-
rion has typically been used for training HMMs . The ML crite-
rion guarantees that the ML estimates approach the true values
of the parameters. The expectation maximization (EM) algo-
rithm [8] is used to estimate the model parameters maximizing
the likelihood for given training data. The EM algorithm pro-
vides a simple iterative procedure to obtain approximate the ML
estimates of parameters. However, the EM algorithm often suf-
fers from the local maxima problem because it is a hill-climbing
approach. To relax this problem, the deterministic annealing
EM (DAEM) algorithm has been proposed [9]. In the DAEM

algorithm, the problem of maximizing the log-likelihood is re-
formulated as the problem of minimizing the thermodynamic
free energy. The posterior distribution derived in the DAEM al-
gorithm includes a “temperature” parameter which controls the
influence of unreliable model parameters. It has been reported
that the DAEM algorithm is effective for HMM-based speech
recognition [10].

In addition, since model structures affect the model pa-
rameter estimation, the model parameters are accurately esti-
mated by selecting appropriate model structures. In HMM-
based speech synthesis, the model structures are selected by the
decision tree based context clustering [11]. This method con-
structs a model parameter tying structure which can assign a
sufficient amount of training data to each HMM state. In the
decision tree based context clustering, it is typically assumed
that the state occupancies are not changed by constructed model
structures. By using this assumption, the context clustering is
efficiently performed. However, the state occupancies are prac-
tically changed before and after context clustering. Especially
when the model structures are significantly changed, the state
occupancies are also significantly changed and the assumption
affects the model selection. Once the inappropriate model struc-
tures are selected, the model parameters are updated under the
inappropriate model structures. As a result, the estimated model
parameters are not reliable. To alleviate this problem, we apply
stepwise model selection to the training part. In the training pro-
cedures using step wise model selection, model structures were
gradually changed from small structures into large structures.
By gradually changing decision trees to larger in the training
procedures, the differences before and after context clustering
become small, and the joint optimization of model structures
and model parameters are performed. As a result, the reliable
acoustic models are obtained.

The rest of this paper is organized as follows. Section 2
describes our base speech synthesis system. Section 3 and 4
introduce new features of our system for the Blizzard Challenge
2011. Subjective listening test results are presented in Section 5.
Concluding remarks and future work are presented in the final
section.

2. Base system
2.1. HMM-based speech synthesis system

Figure 1 overviews a HMM-based speech synthesis system. It
consists of training and synthesis parts.

The training part is similar to that used in speech recog-
nition. The main difference is that both spectrum (e.g., mel-
cepstral coefficients and their dynamic features) and excitation
(e.g., log F0 and its dynamic features) parameters are extracted
from a speech database and modeled by HMMs. Although the
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Figure 1: Overview of HMM-based speech synthesis system.

spectrum part can be modeled by continuous HMM, the F0

part cannot be modeled by continuous or discrete HMM be-
cause the observation sequence of F0 is composed of a one-
dimensional continuous value and discrete symbol which rep-
resents unvoiced. To model such observation sequence, multi-
space probability distributions (MSDs) [12] are used for state-
output distributions.

The synthesis part does the inverse operation of speech
recognition. First, an arbitrarily given text to be synthesized
is converted to a context-dependent label sequence, and then
a sentence HMM is constructed by concatenating the context-
dependent HMMs according to the label sequence. Second,
state durations of the sentence HMM are determined based on
the state-duration distributions. Third, the speech parameter
generation algorithm generates sequences of spectral and exci-
tation parameters that maximize their output probabilities under
the constraints between static and dynamic features [13]. Fi-
nally, a speech waveform is synthesized directly from the gener-
ated spectral and excitation parameters using a speech synthesis
filter. The most attractive part of this system is that voice char-
acteristics, speaking styles, or emotions can easily be modified
by transforming HMM parameters using various techniques,
such as adaptation [5], interpolation [14], or eigenvoices [15].

2.2. Hidden semi-Markov model

In HMM-based speech synthesis, rhythm and tempo are con-
trolled by state duration probability distributions. One of ma-
jor limitations of HMMs is that they do not provide an ade-
quate representation of the temporal structure of speech. This
is because state duration probabilities decrease exponentially
with time. To overcome this problem, the hidden semi-Markov
model (HSMM) based speech synthesis framework [4] was
used in our system. This framework introduces an HSMM,
which is an HMM with explicit state duration probability distri-
butions, into not only the synthesis part but also the training part
of the HMM-based speech synthesis system. It makes possible
to estimate state output and duration probability distributions si-
multaneously. The effectiveness of the HSMM-based approach
has been reported in [4].

2.3. STRAIGHT vocoding

As a high-quality speech vocoding method, we use STRAIGHT,
which is a vocoder type algorithm proposed by Kawahara et
al. [16]. It consists of three main components; F0 extraction,
spectral and aperiodic analysis, and speech synthesis.

The STRAIGHT automatically extract F0 with fixed-point
analysis [17]. Using the extracted F0, we use the STRAIGHT
method to perform pitch-adaptive spectral analysis combined
with a surface reconstruction method in the time-frequency do-
main to remove signal periodicity. As a spectral parameter, we
use the 0th through 49th mel-cepstral coefficients to which the
smoothed spectrum analyzed by the STRAIGHT is converted.
An aperiodicity measure in the frequency domain [18] is also
extracted. As a parameter for constructing a mixed excitation
sources in speech synthesis, average values of the aperiodicity
measures on 26 frequency bands are used.

2.4. Parameter generation algorithm considering global
variance

The HMM-based speech synthesis method generates speech pa-
rameters from the HMMs directly, so that an output probabil-
ity of the parameter is maximized under a constraint on an ex-
plicit relationship between static and dynamic features. Conse-
quently, a smoothed parameter trajectory is generated but it is
excessively smoothed due to the statistical processing. There-
fore, the synthesized speech using over-smoothed parameters
sounds muffled. To reduce this effect, we applied a parameter
generation algorithm considering global variance (GV) of the
generated parameters [19] to both spectral and F0 parameter
generation processes.

One GV is calculated from a parameter sequence over the
entire of one utterance. It should be noted that only voiced
frames are used for calculating GV of F0 parameters. The
probability density on GV is modeled using a Gaussian distri-
bution with a diagonal covariance matrix. In parameter gener-
ation, first a parameter trajectory is generated with the speech
parameter generation algorithm. Then, the generated trajectory
is converted, so that its GV is equal to a mean of the Gaus-
sian distribution. Using this converted trajectory as an initial
value, the parameter trajectory is calculated iteratively to max-
imize a likelihood function with the Newton-Raphson method.
This likelihood function consists of the output probability of the
parameter sequence and that of its GV.

In order to improve the estimation accuracy of GV mod-
els, we use the GV features calculated from only speech region
excluding silence and pause regions and estimate the context-
dependent GV models instead of a single global GV model.
The silence and pause regions are determined by the automatic
phone aligner using HSMMs [20] included in the latest HTS.

3. Deterministic annealing EM algorithm in
parameter estimation

3.1. EM algorithm

The maximum likelihood criterion has typically been used to
train HMMs in HMM-based speech synthesis. In the ML crite-
rion, the optimal model parameters are estimated by maximiz-
ing the likelihood for give training data as follows.

ΛML = arg max
Λ
L(Λ)

= arg max
Λ

log
X

q

P (o, q | Λ) (1)



where o = (o1, o2, . . . , oT ) and q = (q1, q2, . . . , qT ) are re-
spectively the observation and state sequences, and Λ is a set of
model parameters. However, it is difficult to obtain the model
parameters ΛML analytically. To overcome this problem, the
expectation maximization (EM) algorithm [8] is used in HMM-
based speech synthesis. The EM algorithm provides a simple
iterative procedure to obtain ΛML.

The objective of the EM algorithm is to estimate a set
of model parameters which maximizes the incomplete log-
likelihood function. The EM algorithm is described as follows.

EM algorithm

1. Set Λ(0) and k ← 0.

2. Iterate the following EM-steps until convergence:

E-step: CalculateQ(Λ,Λ(k))

M-step: Λ(k+1) = arg maxΛQ(Λ,Λ(k))

Set k ← k + 1

where k denotes the iteration number. The EM algorithm starts
with an initial model parameter set Λ(0) and iteratively maxi-
mizes the auxiliary function calledQ-function.

Q(Λ,Λ(k)) =
X

q

P (q | o,Λ(k)) log P (o, q | Λ) (2)

where P (q | o,Λ) is the posterior probability of a state se-
quence q. It can be obtained by the Bayes theorem as follows.

P (q | o,Λ) =
P (o, q | Λ)

P

q P (o, q | Λ)
(3)

E-step calculates Q-function, which is the expectation of the
log-likelihood with respect to the conditional distribution of q
given o under the current estimate of the parameter set Λ(k),
and M-step computes a parameter set maximizing Q-function.
This procedure is iterated until convergence of the expected log-
likelihood calculated in the E-step. However, the EM algorithm
sometimes suffers from the local maxima problem because it is
a hill-climbing approach.

3.2. Deterministic annealing EM algorithm

To relax the local maxima problem in the EM algorithm, the
deterministic annealing EM (DAEM) algorithm has been pro-
posed [9]. In the DAEM algorithm, the problem of maximizing
the log-likelihood function is reformulated as the problem of
minimizing the following free energy function.

F(Λ) = − 1

β
log

X

q

P β(o, q | Λ)

= −
X

q

f(q | o,Λ) log P (o, q | Λ)

− 1

β

X

q

f(q | o,Λ){− log f(q | o,Λ)} (4)

where 1/β is called as “temperature” in the DAEM algorithm.
If β = 1, the negative free energy−F(Λ) becomes equal to the
log-likelihood function L(Λ). In the deterministic annealing
approach, the new posterior distribution f is derived so as to
minimize the free energy under the constraint of

P

q f = 1. To
solve this problem, we can use elementary calculus of variations

to take functional derivatives of Eq. (4) with respect to f , and
the optimal distribution can be derived as follows.

f(q | o,Λ) =
P β(o, q | Λ)

P

q P β(o, q | Λ)
(5)

The DAEM algorithm maximizes the auxiliary function called
U-function instead of theQ-function used in the EM algorithm.

Uβ(Λ,Λ(k)) =
X

q

f(q | o,Λ(k)) log P (o, q | Λ)

=
X

q

P β(o, q | Λ(k))
P

q′ P β(o, q′ | Λ(k))
log P (o, q | Λ)

(6)

The temperature parameter β is gradually increased while it-
erating the EM-steps at each temperature in the DAEM algo-
rithm. When 1/β is set to an initial temperature β(0) ≈ 0,
the EM-steps may achieve a single global minimum of F(Λ).
At the initial temperature, the posterior distribution f takes a
form nearly uniform distribution. While the temperature is de-
creasing, the form of f changes from uniform to the original
posterior. Finally at the temperature 1/β = 1, the DAEM algo-
rithm is identical with the original EM algorithm. The DAEM
algorithm is described as follows.
DAEM algorithm

1. Set β ← β(0)(β(0) ≈ 0).

2. Set Λ(0) and k ← 0.

3. Iterate the following EM-steps until convergence:

E-step: Uβ(Λ,Λ(k))

M-step: Λ(k+1) = arg maxΛ Uβ(Λ,Λ(k))

Set k ← k + 1

4. Increase β.

5. If β < 1, repeat from step 3.

3.3. Optimization of state sequences

In HMM-based speech synthesis , the DAEM posterior distri-
bution f can be calculated by the forward-backward algorithm.
The numerator of the posterior distribution in Eq. (5) is written
as follows.

P β(o, q | Λ) = P β(o | q,Λ)P β(q | Λ) (7)

where P (o | q,Λ) and P (q | Λ) indicate state output and tran-
sition probabilities, respectively. It can be observed that Eq. (7)
has the same form as the likelihood function of HMMs. There-
fore, the expectations with respect to the DAEM posterior dis-
tribution f can be calculated by replacing the state output and
transition probabilities with P β(o | q,Λ) and P β(q | Λ), re-
spectively. When the temperature parameter is set to the initial
temperature β(0) ≈ 0, the state output and transition distribu-
tions of all models are represented by using the same parameter.
Therefore, the reliable model parameters can be estimated with-
out the phone boundary information when the DAEM algorithm
is applied.



4. Stepwise model selection
It is well known that contextual factors affect speech. There-
fore, context-dependent acoustic models [21, 22] are widely
used in HMM-based speech synthesis. Although a large number
of context-dependent acoustic models can capture variations in
speech data, too many model parameters lead to the over-fitting
problem. Consequently, maintaining a good balance between
model complexity and the amount of training data is very im-
portant for obtaining high generalization performance. The de-
cision tree based context clustering [11] is an efficient method
for dealing with the problem of data sparseness, for both esti-
mating robust model parameter of context-dependent acoustic
models and obtaining predictive distributions of unseen con-
texts. This method constructs a model parameter tying struc-
ture which can assign a sufficient amount of training data to
each HMM state.

Since model structures affect the model parameter estima-
tion, the model parameters are accurately estimated by selecting
appropriate model structures. In the decision tree based con-
text clustering, it is typically assumed that the state occupancies
are not changed by the split nodes. By using this assumption,
the context clustering is efficiently performed. However, the
state occupancies are practically changed before and after con-
text clustering. Especially when the model structures are sig-
nificantly changed, the state occupancies are also significantly
changed and the assumption affects the model selection. In ad-
dition, when hidden semi-Markov models are used as acoustic
models, the state occupancies are significantly changed because
the model structure of state duration model is changed. Once
the inappropriate model structures are selected, the model pa-
rameters are estimated under the model structures. As a result,
the estimated model parameters are not reliable. To alleviate
this problem, we apply stepwise model selection in the training.
In the stepwise model selection method, decision trees are grad-
ually changed from small trees into large trees for estimating re-
liable acoustic models. By changing from small trees into large
trees in the training procedures, the differences before and after
context clustering become small, and the joint optimization of
the model structures and the state occupancies are performed.

In HMM-based speech synthesis, the minimum description
length (MDL) criterion is widely used as the criterion for model
selection [23]. The context clustering based on the MDL crite-
rion constructs the decision trees which minimize the objective
function FMDL.

FMDL = − log P (o | Λ) + αDNlogT (S0) (8)

where D and N are the dimension of observation vectors and
the number of clusters, T (S0) is the amount of training data as-
signed to the root node of the decision tree, and α is the tuning
parameter to control the size of the selected decision tree. In
the training of our system, the stepwise model selection is per-
formed by gradually decreasing the tuning parameter α. The
context clustering was separately applied to distributions of the
spectrum, F0, aperiodicity measures, and state duration.

5. Blizzard Challenge 2011 evaluation
We used 10,000 utterances, which were selected according to
the alignment likelihood, as training data. Speech signals were
sampled at a 48 kHz rate and windowed by an F0-adaptive
Gaussian window with a 5 ms shift. Feature vectors com-
prised 231-dimensions: 49-dimension STRAIGHT [16] mel-
cepstral coefficients (plus the zero-th coefficient), log F0, 26

band-filtered aperiodicity measures, and their dynamic and ac-
celeration coefficients. We used 5-state left-to-right context-
dependent multi-stream MSD-HSMMs [4, 12] without skip
transitions as acoustic models. Each state output distribution
was composed of spectrum and F0 streams. The spectrum
stream was modeled by single multi-variate Gaussian distribu-
tions with diagonal covariance matrices. The F0 stream was
modeled by a multi-space probability distribution consisting of
a Gaussian distribution for voiced frames and a discrete distri-
bution for unvoiced frames. Each state duration distribution was
modeled by a one-dimensional Gaussian distribution.

In the training part of our system, we trained the MSD-
HSMMs according to the following procedure.
Training procedure

1. Estimate monophone models using DAEM algorithm.
The number of temperature parameter updates was ten,
and the number of model parameter updates at each tem-
perature was five.

2. Model structures are selected by using the MDL criterion
and the tuning parameter α.

3. Estimate context-dependent models using EM algo-
rithm. The number of model parameter updates was five.

4. Decrease the tuning parameter.

5. Repeat from step 2.

In this training procedure, we did not use the given phone
boundary information because the DAEM algorithm was ap-
plied. The decision tree-based context clustering technique was
separately applied to distributions of the spectrum, F0, aperi-
odicity measures, and state duration. The model selection was
iterated three times. Then, the tuning parameter decreased as
follows: 4, 2, 1.

In the synthesis part, we applied the parameter generation
algorithm considering global variance (GV) to all parameter
generation processes. In order to improve the estimation ac-
curacy of GV models, we used the GV features calculated from
only speech region excluding silence and pause regions and es-
timated the context-dependent GV models instead of a single
global GV model. The decision tree-based context clustering
technique was also applied to the context-dependent GV mod-
els. The decision tree was automatically selected by the MDL
criterion. In this system, only sentence-level contextual features
(e.g., number of phonemes in a sentence) were used.

5.1. Experimental results

To evaluate naturalness and similarity, 5-point mean opinion
score (MOS) tests were conducted. The scale for the natural-
ness was 5 for “completely natural” and 1 for “completely un-
natural”. The scale for the similarity was 5 for “sounds like ex-
actly the same person” and 1 for “sounds like a totally different
person” compared to a few natural example sentences from the
reference speaker. To evaluate intelligibility, the subjects were
asked to transcribe US address and semantically unpredictable
sentences (SUS), and the average word error rates (WER) were
calculated from these transcripts.

Figure 2 shows the evaluation results on naturalness. Fig-
ure 3 shows the evaluation results on speaker similarity. Fig-
ure 4 shows the evaluation results on intelligibility. In these
figure, “A”, “B”, “C”, “D”, and “F” correspond as follows.

• A: natural speech.



Figure 2: Results of MOS on naturalness.

Figure 3: Results of MOS on speaker similarity.

• B: a Festival benchmark system. This system is a stan-
dard unit-selection voice built using the same method as
used in the CSTR entry to Blizzard 2007.

• C: a benchmark speaker-dependent HMM-based system.
This system is built using a similar method to the HTS
entry to Blizzard 2005.

• D: the same as System C, except using 48kHz sample
rate data.

• F: the 2011 NIT HMM-based speech synthesis system.

The results of listening tests showed that our system “F”
was as good as both the benchmark unit-selection system “B”
and the HMM-based system “D” in naturalness of speech.
However, our system “F” was worse than the benchmark unit-
selection system “B” in terms of speaker similarity. The speaker
similarity was the acknowledged weakness of the HMM-based
speech synthesis method especially in the case of large speech
databases. In terms of intelligibility, our system “F” outper-

Figure 4: Results of WER.

formed the benchmark unit-selection system “B” although our
system was as good as the HMM-based system “C” and “D”.
[24] also showed that a HMM-based speech synthesis system
was significantly more intelligible than a unit-selection based
speech synthesis system. These results indicate that our system
“F” can generate the high intelligible speech although the nat-
uralness and speaker similarity do not reach high enough lev-
els. It seems that the buzziness of speech cause these results.
Therefore, we need to improve the excitation model and feature
extraction.

6. Conclusion
We described HMM-based speech synthesis system developed
at the Nagoya Institute of Technology (NIT) for the Blizzard
Challenge 2011. We experimented with the DAEM algorithm
and stepwise model selection in the training part and the pa-
rameter generation considering context-dependent global vari-
ance (GV) excluded silence and pause segments in the synthe-
sis part. The results of listening tests showed that our system
was as good as both the benchmark unit-selection system and
the HMM-based system in naturalness of speech. However,
our system was worse than the benchmark unit-selection sys-
tem in terms of speaker similarity. The speaker similarity was
the acknowledged weakness of the HMM-based speech synthe-
sis method especially in the case of large speech databases.
In terms of intelligibility, our system competed with natural
speech and outperformed the benchmark unit-selection system
although there was no significant difference. These results indi-
cate that our system can generate the high intelligible speech al-
though the naturalness and speaker similarity do not reach high
enough levels. It seems that the buzziness of speech cause these
results. Therefore, we need to improve the excitation model and
feature extraction.
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