
PUB Entry in the Blizzard Challenge 2011

Marius Cotescu

Department of Applied Electronics and Information Engineering, ”Politehnica” University
of Bucharest, Bucharest, Romania

mcotescu@lpsv.pub.ro

Abstract
The paper presents the entry in this year’s Blizzard Challenge
of the Politehnica University of Bucharest. We present a para-
metric speech synthesis system based on HTS, which tried to
achieve two important goals: gain better control over the vocal
tract filter, and allow greater variability for the excitation source
features by separating, as much as possible, the two processes.
We proposed the spectral tilt as a feature of both voiced and un-
voiced excitation that can be easily and reliably estimated and
extracted from the smoothed spectrum, leaving more consistent
data for the vocal tract model. We also engaged the problem
of modelling the STRAIGHT aperiodicity coefficients in a new
manner, which provides more details to synthetic speech. It
was the first entry from the laboratory, and unfortunately both
the limited experience and the scarce human resource deployed
had decisively influenced the results.
Index Terms: speech synthesis, spectral tilt, glottal flow, HMM

1. Introduction
Parametric speech synthesis systems based on the HMM frame-
work have always had the advantage of intelligibility over con-
catenative systems, while naturalness, despite continuous im-
provements [1], [2], [3], [4], remains its weakest point. One of
the constantly reported shortcomings of HMM-based TTS sys-
tems is the lack of the ”small imperfections” characteristic to
natural speech.

One way of addressing this problem is the use of HMM-
driven unit selection systems that are able to deliver high nat-
uralness [5], as well as high intelligibility [6]. Another way
seems to be the careful refinement of the statistical models [3],
which has shown that purely parametric systems can produce
very competitive systems.

In the source-filter paradigm of speech production [7], the
vocal tract is viewed a being a passive component, that brings
an almost negligible contribution to the energy of the spoken
signal. Further more, an attempt is made to model the spectral
tilt of the signal, which is strongly correlated to the glottal pulse
shape [8], as an independent feature of the spoken signal. Pre-
vious attempts have been made to use a glottal flow model to
excite HMM-based synthesis systems [9], but robustness prob-
lems in parameter extraction were reported.

A cepstral approach is introduced to model the STRAIGHT
aperiodicity coefficients [10], in order to achieve finer details of
the generated excitation signal.

Section 2 presents the signal processing techniques de-
ployed to remove excitation signal information from the vocal
tract filter data, and our view on modelling the aperiodicity co-
efficients. Section 3 briefly describes the implementation of our
modelling choices into an HTS-based system, and our labelling

scheme. Section 4 presents the results and Section 5 concludes
the paper.

2. Feature Extraction
To address the lack of variability in synthetic speech, we first
need to identify its sources in natural speech. The source-filter
model [7] describes two separate processes that take place dur-
ing speech production: producing the excitation signal, and then
re-shaping its spectral structure by passing through the vocal
tract. The vocal tract shape is responsible for encoding the lex-
ical information, and needs to vary its configuration at a slower
rate to allow the listeners time to decode the message. The exci-
tation signal, on the other hand, is conveying only broad lexical
information, and is allowed to vary its parameters more freely.
The small contribution to the lexical information, does not mean
that it does not contribute to the conveyed information. Quite
the contrary, it is often associated with conveying emotions and
subtle changes in the meaning. The small and rapid perturba-
tions in the excitation parameters are also responsible for the
naturalness of the uttered sound.

In [11] we have proven that synthetic speech quality can be
improved by separating the energy and spectral tilt information
from the vocal tract model. This allowed the vocal tract models
to be more accurate, while allowing the other spectral feature
to vary independently, thus permitting the system to generate a
greater range of possible acoustical realisations.

2.1. Spectral Structure of the Glottal Pulse

In [11] the spectral tilt was defined as the regression line fit-
ted over a frame’s amplitude spectrum, expressed in decibels,
over a logarithmic frequency scale. This definition — although
proving to give results — is not in accordance with the spectral
structure of the glottal pulse.

We have chosen to use the Liljencrants-Fant (LF) glottal
flow model, [12], in order to analyse the spectral structure of
the glottal pulse, and thus improve the working definition of the
spectral tilt. The time-domain expression of the LF model is
given in Equation 1. The first branch of the model describes the
flow during the opening phase of the glottal movement, which
starts at t = 0 and ends at the moment of maximum excitation,
te. The second branch defines the behaviour during the closing
stage. The time constant ta is defined as the duration from te to
the moment when a tangent at the exponential in t = te reaches
0. The other two parameters are the maximum excitation Ee,
and the instant of maximum airflow tp.

e(t) =

{
E0 · eαt · sin(ωgt), 0 ≤ t ≤ te
− Ee
εta
·
(
e−ε(t−te) − e−ε(T−te)

)
, te < t ≤ T

(1)
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Figure 1: Spectrum of the LF model (solid line), its stylisa-
tion (dashed line), and its approximation by a regression line
in the log-frequency domain (dotted line). [f0 = 150Hz, tp =
2.8ms, te = 4ms, ta = 0.05ms]

where ωg = 1
πtp

. The values ofE0, α, and ε can be determined
using the methods described in [12].

The stylisation of the LF glottal flow model spectrum [8] is
given in Fig. 1. After the maximum represented by the glottal
formant Fg , the amplitude decreases at a rate of 6 dB/octave,
until the cut-off frequency Fc of the low-pass filter, introduced
by the return phase. The two combined filters give a slope of
-12 dB/octave.

By approximating the spectral shape of the glottal pulse by
a single line segment, we were able to remove some of the as-
pects of the excitation signal from the vocal tract model. The
fact that the spectral tilt can also be defined for unvoiced sounds,
ensures the generality of the measure. Thus, the chances of arte-
facts appearing in the generated utterances at voiced-unvoiced
transitions is significantly reduced.

However, this is not a very good approximation of the spec-
tral shape of the glottal pulse. One solution would be to deter-
mine the temporal parameters of the LF model for each frame,
and then subtract the corresponding spectrum from the observed
frame. But, by doing this the advantage of a smooth transition
of the extracted features between voiced and unvoiced segments
would be lost.

Instead, we focused on maintaining the approach, but mini-
mizing the approximation error. To achieve this, we tried to find
the optimum value for a of the frequency warping function

βa(ω) = tan−1

(
1− a2 sin(ω)

1 + a2 cos(ω)− 2a

)
(2)

over which the spectrum would be better fitted by a linear
model. To do this, we have generated synthetic glottal pulses
covering a large enough domain in the parameter space that
were used to evaluate the different warping factors. The range
of the parameters is presented in Table 1.

For each value of the warping factor a ∈ [0.38, 0.58], the
mean absolute error between the linear approximation of the
spectrum, and it’s actual realisation, expressed in dB, was com-
puted. Fig. 2 shows a plot of the MSE versus the different
values of alpha. The dashed line represents the baseline error
obtained by fitting the spectrum with two linear segments (from

Table 1: Range of the LF model parameters used in evalua-
tions.

Parmeter Units Range
f0 Hz [150, 350]
tp % of te [70, 80]
te % of T0 [60, 70]
ta ms [0.05, 0.3]
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Figure 2: MSE vs warping factor.

Fg to Fc, and from Fc to the Nyquist frequency) on the loga-
rithmic scale. The dotted line represents the baseline obtained
by fitting the spectrum with only one linear segment between
Fg and the Nyquist frequency over the logarithmic scale. The
MSE shows a minimum of 0.285 dB for a = 0.46, which for
the sampling frequency of 16 kHz, falls somewhere between the
Mel (a = 0.42) and Bark (a = 0.57) frequency scales.

As the global spectral tilt is actually given by the lengths
of the two linear segments on the logarithmic scale, i.e. the
value of Fc, we would also desire a frequency scale that pro-
vides a strong correlation between ta and the spectral tilt. Fig.
3 shows the correlation coefficient between the measured spec-
tral tilt and the value of ta as a function of a. The mean value
of the measured spectral tilt as a function of ta and a is shown
in Fig. 4.

Because of the very small variation in both the MSE value,
and the correlation coefficient, a preliminary listening test was
run to choose between the Mel and the Bark frequency scales.
Two systems were trained, using the first 1000 sentences in the
corpus, and the naturalness of the two voices was evaluated,
showing a slight preference for the Bark scale.

We define the spectral tilt of a frame, m, as the slope of the
regression line fitted over the amplitude spectrum expressed in
dB, starting from 2f0 to fs/2, over the Bark scale. The log-
energy of the frame logE, is defined as the intercept of the
regression line. Notice that this stylisation ignores the position
of the glottal formant. We start the fitting at 2f0 in order to
make sure that the glottal formant will not affect the slope. For
unvoiced frames, f0 is set to 150 Hz. The gross representation
of the excitation signal ST (ω), can then be written as

logST (f) = logE +m · Bark(f), (3)
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Figure 3: Correlation coefficient between the measured spectral
tilt and the value of ta.
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Figure 4: Mean value of the measured spectral tilt as a function
of ta and a.

where

Bark(f) = 13 arctan(0.00076 · f) + 3.5 arctan

(
(
f

7500
)2
)

(4)

2.2. Extracting the Vocal Tract Filter

The spectrum of an analysis frame of vocal signal S(ω) is deter-
mined by a number of contributions along the vocal tract length.
First, there is the general structure ST (ω) given by the excita-
tion signal, superimposed on a harmonic structureHa(ω) (if the
sound is voiced), or noise (in the case of unvoiced sounds). The
excitation signal is then filtered by the vocal tract (V T (ω)), and
radiated from the lips (U(ω)).

S(ω) = Ha(ω) · ST (ω) · V T (ω) · U(ω). (5)
The harmonic structure is removed by STRAIGHT analysis

[13], and it’s usual to include the radiation filter in the excitation
model. Thus, the spectrum produced by STRAIGHT analysis
can be written in a simpler manner, as

S(ω) = ST (ω) · V T (ω). (6)
By using the stylisation of the excitation signal introduced

in Equation 3, the vocal tract transfer function can be approxi-
mated by

log(V T (ω)) = log(S(ω))− (logE +m · βa(ω)). (7)

The spectrum obtained from Equation 7, is then processed
and 39 generalised cepstral coefficients [14] (γ = 0.33),
warped on the Bark scale (a = 0.57), without the 0th coeffi-
cient, are extracted.

2.3. Modelling the Aperiodicity Coefficients

The aperiodicity (AP) coefficients, introduced in [10] as the ra-
tio between the STRAIGHT spectral envelope extracted using
the harmonic peaks and the one extracted using inter-harmonic
valleys, are a measure of the jitter, shimmer, and Harmonic-to-
Noise Ratio. The classical way of coding the AP coefficients is
by using their mean value over five frequency sub-bands (0–1
kHz, 1–2 kHz, 2–4 kHz, 4–6 kHz, and 6–8 kHz). A perceptu-
ally motivated approach, using the Bark critical sub-bands, was
proposed in one of the entries in the previous Blizzard Chal-
lenge [3] showing that a more refined coding can improve the
naturalness of the synthetic voice.

Our system, uses the method presented in [11]. The AP
coefficients are treated as samples of an amplitude spectrum,

AP [n] = PAP (π · n
N
· fS), (8)

from which cepstral coefficients can be extracted. Our stud-
ies showed that by replacing the 5 sub-band mean values with
15-order cepstral analysis produces a noticeable increase in the
quality of the synthetic voice.

3. Synthesis System
The synthesis system is based on the demo provided with ver-
sion 2.1.1 of the HTS toolkit. It uses 5-state trajectory-HSMM
models, with explicit state duration modelling. The missing
values for the pitch in unvoiced frames are modelled using the
MSD framework.

3.1. Structure of the Acoustic Models

The observation vectors include information about the vocal
tract, pitch, energy, spectral tilt, and the AP coefficients, struc-
tured in 8 streams:

• Vocal Tract information is coded using one stream, con-
taining the 39 generalised cepstral coefficients, their ∆,
and ∆2 coefficients.

• Pitch information is coded using the current value ex-
tracted by STRAIGHT analysis, expressed in Mels, and
its first and second derivatives, in three separate MSD
streams.

• AP coefficients are coded using 16 cepstral coefficients,
and their first and second derivative, in one stream.

• Energy and Spectral Tilt are coded in one stream, due
to the strong link between the two, introduced by the way
in which they are defined. Alongside their current val-
ues, the first and second derivatives are included in two
additional streams.

3.2. Labelling

The labelling scheme generally follows labelling scheme intro-
duced in [15], with the exception of the phonetic and syllable
levels, which were slightly affected by the use of lessemes as
the base labels.

At the phonetic level, the phoneme was replaced by the base
lesseme. At the syllable level, the stress information usually



provided by the lexicon was extracted from the lesseme stress
value. Additional fields were inserted at the syllable level to
label the additional pitch level and inflection information pro-
vided by the vowel lessemes. For consonant sounds, the playa-
bility information was kept in the phonetic context.

The question set used in the clustering stage is derived from
the questions provided with the HTS demo. The following
questions were added:

• is the value of {preceding, current, succeeding} syllable
pitch level equal to k ∈ {1, 2, 3}?

• is the value of {preceding, current, succeeding} syllable
pitch level less than or equal to k ∈ {2, 3}?

• is the value of {preceding, current, succeeding} syllable
inflection type equal to {fN, fU, fW, fC, fD, fS}?

• what is the playability of the {preceding, current, suc-
ceeding} consonant?

3.3. Waveform Synthesis

For each frame, the system produces cepstral coefficients for the
vocal tract and AP models, a value for the frame’s pitch, and
the energy and spectral tilt information. After reconstructing
the vocal tract transfer function, and the AP coefficients, the
STRAIGHT spectrum is reconstructed using Equations 3 and
6. The smooth spectrum, AP coefficients, and pitch contour are
fed to the STRAIGHT vocoder to reconstruct the waveform.

Unfortunately, due to a bug in the spectrum reconstruction
code, instead of using the Bark frequency scale, the logarithmic
one was used instead. Because the team had only one person,
the final version was ready extremely late in the schedule, and
exhaustion had set in, no effort was put into finding and fixing
the bug. Even though the preliminary voices, built for evaluat-
ing the frequency scales, were significantly better than the final
one.

The bug was fixed after the results were published, and the
new utterances can be downloaded from ftp://lpsv.pub.ro. Too
late, though.

4. Results
This year’s Blizzard Challenge was organised into one hub task,
EH1, and one spoke task, ES1. The hub task consisted of
building a general voice using the entire database. The spoke
task consisted of building a voice designed for reading names
and addresses in US format. The EH1 evaluation consisted of
the standard naturalness, similarity and SUS intelligibility tests,
while the ES1 evaluation focused only on the intelligibility test.
We have entered the same voice in both tasks. No particular em-
phasis or effort was put into designing the voice for the address
reading task.

Our system was designated by the letter I in the listening
tests. The fact that a mean value of about -8 dB/octave for the
spectral tilt on the logarithmic scale for voiced segments was
replaced by a mean value of about -3 had disastrous effects on
the naturalness of the synthetic utterances. The voice is too
”bright”, and too ”buzzy”. The system was placed last in all
naturalness and similarity tests.

As far as the intelligibility tests are concerned, the results
are a little bit better. In the SUS test, the Word Error Rate is
about the same as the poor performing systems, and the dif-
ferences between our system and the well-performing ones are
statistically significant at a 1% level.
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Figure 5: WER results in the address task for online volunteers.

In the case of the address data, the system achieved the low-
est WER in the online volunteer scenario (Fig. 5), slightly out-
performing even natural speech. This might be the result of
an over-accentuated Lombard effect, which counted in the sce-
nario of more noisy listening conditions and poorer quality of
the equipment. The limited number of data points compels us
to take a more reserved position, although the most intelligible
system in the 2010 Blizzard Challenge speech in noise task [4]
reported, as the main techniques, increasing the spectral tilt and
the formant contrast.

5. Conclusions

The paper presents the PUB entry in the 2011 Blizzard Chal-
lenge, which introduced improvements to the vocal tract and
excitation source coding and models. Although a previous study
[11] showed that the deployed methods should have increased
the quality of the voice, an unfortunate bug in the system pre-
vented its correct placement in the evaluation. The mistake has
produced one interesting result, though: the system had the low-
est WER in the ES1 task evaluation, most probably due to the
exaggerated Lombard effect produced by the unnaturally high
spectral tilt values.
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