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Abstract
This paper describes the GlottHMM speech synthesis system
for Blizzard Challenge 2012. The aim of the GlottHMM sys-
tem is to combine high-quality vocoding and detailed prosody
modeling in order to produce expressive, high quality, synthetic
speech. GlottHMM is based on statistical parametric speech
synthesis, but it uses a glottal flow pulse library for generating
the excitation signal. Thus, it can be regarded as a hybrid system
using the pulses as concatenative units that are selected accord-
ing to the statistically generated voice source feature trajecto-
ries. This year’s speech material was challenging especially, but
despite that we were able to achieve a clean, intelligible voice
with decent above average prosody characteristics.
Index Terms: statistical parametric speech synthesis, hybrid,
unit selection, glottal inverse filtering, glottal flow pulse library

1. Introduction
The Blizzard challenge 2012 was a definite step up from the
previous ones, involving under-researched topics such as subop-
timal recordings and recording conditions, continuous speech,
prose with mixed styles and synthesizing paragraph-length ut-
terances. Within limited time, none of the advanced topics
could be given proper attention on our submission, and even
achieving acceptable level of intelligibility was not a trivial task
this year. Nevertheless, we found it beneficial to participate in
the challenge in order to test new ideas and explore the limits of
our system, designed and evaluated previously on studio quality
and rather formal speech.

The paper is organized as follows. Section 2 describes the
aim of our research and gives an overview of the system. Sec-
tion 3 describes the methods used in front-end and voice build-
ing. Section 4 describes feature extraction, parameter training
and generation, and synthesis. The results of the evaluation are
described in Section 5 and Section 6 summarizes the findings.

2. Overview of the system
The overall aim of the GlottHMM research is to combine
novel vocoding methods and detailed prosody modeling in or-
der to produce expressive, high quality, synthetic speech. The
overview of the text-to-speech (TTS) system is shown in Fig-
ure 1. In prosody modeling, our general methodology is strong
coupling with linguistic front-end and hidden Markov model
(HMM) training; iterative refinement of HMM and contextual
labels. Central to our prosody modeling is the concept of word
prominence, annotated automatically for training corpus, and
used as a contextual feature in HMM training. In order to
model expressive prosody, especially on paragraph sized utter-
ances, good predictive features are needed. In addition to part-
of-speech, we typically use such linguistic features as (noun)
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Figure 1:Overview of the TTS system.

phrase structure, focus particles, word order and discourse in-
formation status, as well as numerical features derived from au-
tomatic annotation process and text data. These features, with
fairly indirect relationship with acoustic parameters, are used
only on predicting the symbolic prosody labels like prominence
and breaks, not as contextual features in HMM training.

The system uses a vocoder [1, 2, 3] that combines meth-
ods both from statistical parametric and unit-selection systems.
The goal of this approach is to maintain the flexibility of statis-
tical synthesizers while reaching the high quality of speech of
the unit-selection systems. Contrary to usual hybrid systems,
our synthesizer does not need a huge speech database or a huge
amount of stored speech units (e.g. diphones), but it requires
only a relatively small number of natural glottal flow pulses ex-
tracted from a small part of the speech database.



The vocoder first parametrizes speech into vocal tract and
voice source features using glottal inverse filtering. The pur-
pose of this decomposition is to accurately model both of the
speech production components: source and filter. The voice
source is converted into a glottal flow pulse library to enable re-
construction of the natural voice source in the synthesis stage.
The pulse library consists a small number of (automatically) se-
lected glottal flow pulses linked with the corresponding glottal
source features. In synthesis stage, the voice source is recon-
structed by selecting glottal flow pulses from the pulse library
according to the voice source features. Thus, the voice source
preserves the characteristics of natural excitation, such as spec-
tral tilt, phase spectrum, and the fine structure of the excitation
noise. Once the voice source is created, it is filtered with the
vocal tract filter to generate speech.

This type of system is very flexible; the statistically mod-
eled parameters can be easily adapted as in pure statistical TTS,
and the small pulse library can be easily changed or modified
according to, for example, speaker or speaking style. The cost
of such a system is the addition of several voice source related
parameters that need to be trained and the increased time in cre-
ating the excitation signal.

3. Voice building

In this section, we will discuss the steps of our voice building
process, second time applied to English. Compared to e.g. Fes-
tival, there is a closer relationship with label generation and the
training speech in our process, involving steps of partial HMM
training and use of acoustic features in labeling.

3.1. Data selection and linguistic features

Three audio books by Mark Twain read by a male amateur
reader were given as training material for the challenge. We
decided to use just one book, assuming that consistent style and
recording conditions would compensate for the smaller size of
the training data. “Adventures of Tom Sawyer” was selected,
on the grounds that it contained the least amount of out-of-
vocabulary (OOV) words and foreign names with possibly un-
predictable pronunciation. In retrospect, this choice was a grave
mistake as later listening revealed the other two books to be
much better in terms of recording quality and background noise.
Of the selected book, we chose only the utterances with pro-
vided confidence scores of 100 percent, and we also skipped the
sentences containing OOV words. The final size of the pruned
training data was 3740 sentences.

External tools were used for initial labeling. Pronunciations
and syllabification was performed with Unilex lexicon, general
American variant. For part-of-speech (PoS) labeling and syn-
tactic chunking, TreeTagger [4] was applied. PoS tags were
used to disambiguate pronunciations.

3.2. Phrase breaks

Phrase breaks were acquired from original speech data. Firstly,
monophone HMMs were trained with silence models attached
to punctuation symbols. Secondly, the utterances were aligned
with optional silences after each word. The recognized silences
were further divided into three categories of phrase boundary
strength. The categories were determined using silence duration
and the duration of final syllable before silence. In synthesis, the
breaks were predicted by rule, mainly based on punctuation.

3.3. Phrase style

While listening to the audio book, we identified three general
reading styles suitable for modeling:

1. Low pitched, rather monotone, often suspenseful pas-
sages

2. Normal narrative style with rather lively prosody
3. Often high pitched, lively quotations

Quotations themselves were found to be very heterogeneous,
with reader acting various characters, but more finer grained
classification seemed out of reach, especially for prediction pur-
poses. The styles were annotated by first training a voice with-
out style labels, an “average-style” voice. Then parameters, fun-
damental frequency (F0) and energy of the training utterances
were generated and compared to the original ones, with the idea
that energy and F0 would on average be higher in the original ut-
terances for quotations and lower for suspenseful style. The raw
style score for each utterance was calculated as the weighted
sum of differences between original and generated mean values
of F0, energy and harmonic-to-noise ratio (HNR). The raw val-
ues were further binned into three classes, corresponding to the
aforementioned styles. The weights and division points were
set by hand after some experimentation.

Alternatively, we considered just skipping the utterances
deviating considerably from the generated parameter trajecto-
ries. This would have probably resulted in a more stable voice
but with no options to model styles in synthesis time.

Unfortunately, we neglected the work on various typo-
graphical conventions on marking quotations in text. Thus, in
synthesizing test utterances, we were not able to predict but few
phrases to be uttered in quotation style.

3.4. Word prominence

Word prominence was determined using similar approach as in
annotating the utterance style, first training a voice with simple
set of contextual features and then comparing original (O) and
generated (G) acoustic-prosodic parameters [5]. Compared to
Blizzard Challenge 2010 [2], we are moving towards simpler,
less supervised method, requiring only setting of weights of pa-
rameter types, but no manual labeling. The proper set of param-
eters and measurements is still under development, but we know
that for example F0 in Finnish correlates with perceptual promi-
nence so that the higher the peak and the faster and larger the
movement, the more prominent the word is perceived [12]. For
the current entry, mean and variance normalized measures were
made for F0, energy, HNR and duration. To detect local syl-
lable peaks, we calculated the difference between previous and
current syllable mean (rise) and difference between current and
next syllable mean (fall), as well as the mean value of the cur-
rent syllable, normalized over a window of five syllables (max).
These were calculated for both O and G parameters, and the
differences between O and G of rise, fall and max were also
calculated. Mean values were used instead of minimums and
maximums because they are more robust to e.g. octave jumps.
After some experimenting the weights of parameter types were
set manually as F0 = 0.5, energy = 0.25, duration = 0.25. HNR
did not seem to contribute probably due to noisiness of the data.
Both O and diff(O,G) measurements were taken into account
with equal weights. Rise, fall and max were also given equal
weight. The sum of these normalized measurements (see Fig.
2) was the calculated and binned to four classes, corresponding
roughly to unaccented, secondary accent, primary accent and
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Figure 2: Example of prominence annotation of complex sen-
tence with two contrasts:“Can’t learn an old dog new tricks, as
the saying is”

emphasis. Only lexically stressed syllables were taken into ac-
count for word prominence labels.

The general experience was that our prominence annotation
method did not work very well here compared to previous ex-
periments with more formal speech. The larger F0 movements,
especially on quotations, seemed often to be more related to
higher level discourse factors than prominence signaling.

In generating labels for the test utterances, word promi-
nence was predicted by a combination of classification and re-
gression tree (CART) and rules. The CART was trained on
automatically annotated training data, the same data as used
for voice building. The features used for training the model
were average prominence of the word base form in the train-
ing data, part-of-speech, and information content with window
length five. For words with few instances in the training data
(< 5), the average prominence of the part-of-speech class was
used instead of average prominence of the word. The model
included also phrase style, as well as features describing the po-
sition of the word in phrase and utterance.

Additional rules were included in an attempt to handle some
rare phenomena that could not be learned from relatively small,
noisy training data. These included discourse related factors
for synthesizing contextually appropriate prosody in paragraph-
sized chunks:

• Decrease prominence of the previously seen (given)
noun if it is part of complex noun phrase

• Increase prominence of potentially contrastive adjective
modifiers if the head is given

• Increase prominence of the first content word of the para-
graph

• Increase prominence of words with all-capital spelling
• Disallow many high-prominence words after the main

verb, save last

4. Training and Synthesis
4.1. Feature extraction

The parametrization of the GlottHMM vocoder is illustrated in
Figure 3. The speech signal s(n) is first high-pass filtered in
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Figure 3:Illustration of the parametrization stage.

order to remove possible low-frequency fluctuations, and then
windowed into two types of frames. A short frame (25 ms) is
used for measuring the energy of the speech signal, after which
glottal inverse filtering is applied in order to estimate the vo-
cal tract filter V(z) and the voice source. The estimated voice
source is parameterized with spectral tilt G(z) measured with
an all-pole filter. A modified version of the iterative adaptive
inverse filtering (IAIF) [6, 7] is used for estimating the vocal
tract filter and the voice source. Linear predictive coding (LPC)
is used for estimating the spectra inside the method. Both the
vocal tract filter V(z) and spectral tilt of the voice source G(z)
are converted to line spectral frequencies (LSF) for enabling ro-
bust statistical modeling.

The longer frame (45 ms) is used for extracting the other
voice source features which require that the frame includes mul-
tiple fundamental periods even with very low F0. The estimated
voice source signal g(n) is used for defining the F0, estimated
with an autocorrelation method. The the harmonic-to-noise
ratio (HNR) indicates the degree of voicing in the excitation,
i.e., the relative amplitudes of the periodic vibratory glottal ex-
citation and the aperiodic noise component of the excitation.
The HNR is based on the ratio between the upper and lower
smoothed spectral envelopes (defined by the harmonic peaks
and interharmonic valleys, respectively) and averaged across
five frequency bands according to the equivalent rectangular
bandwidth (ERB) scale. The speech features extracted by the
vocoder are depicted in Table 1.

The glottal closure instants (GCI) of the voice source
g(n) are estimated with a simple peak picking algorithm that
searches for the negative excitation peaks of the glottal flow



derivative at fundamental period intervals. Only the peaks
that are approximately at fundamental period away from each
other are accepted as GCIs. For all the found two-period
speech segments, the modified IAIF algorithm is applied pitch-
synchronously again in order to yield a better estimate of the
glottal flow. The re-estimated glottal flow pulses are windowed
with the Hann window, and a glottal flow pulse library is con-
structed from the extracted pulses and the corresponding voice
source parameters.

4.2. Pulse library

The construction of the pulse library is performed separately
from the training. Only 1–10 short speech files is enough to esti-
mate enough glottal flow pulses to the library, consisting usually
from 1000 to 20 000 pulses. The size of the pulse library can be
greatly reduced for example by k-means clustering and select-
ing the centroid pulses or by including only the most commonly
used pulses, estimated by synthesizing several speech files and
counting the usage of the pulses. Moreover, different pulse li-
braries can be used for synthesizing different voices or voice
qualities.

For the present voice, the pulse library was built from ten
diverse utterances selected for phonetic and F0 range coverage.
The pulse library contained a total of 22 414 pulses. The size of
the pulse library was not reduced since the synthesis time was
not an issue here. The individual weights for the voice source
features for selecting the pulses were set to 0.5, 0.2, 1.0, 0.2,
and 1.0 for vocal tract spectrum, glottal flow spectrum, HNR,
energy, and F0, respectively. Vocal tract spectrum was included
in the weights since it is also a good cue for certain voice types.
Target and concatenation cost weights were set to 1.0 and 2.0,
respectively. All the weights were mostly tuned by hand.

4.3. Parameter training

After the annotation steps, contextual features including word
prominence and phrase style labels were extracted, and HMMs
were trained in a standard HTS fashion [10], except that five it-
erations of MGE-training [11] was included for vocal tract LSFs
as a final step. LSF and energy features were trained together in
a single stream in order provide better synchrony between the
parameters. Other features were trained in individual streams
except F0 which uses a multi-space distribution (MSD) stream.

First experiments provided fairly unstable and muffled syn-
thesis quality, indicating alignment problems in training. Since
LSFs are highly correlated with each other, there are known
problems in training them. To remedy the situation, we opted
to use the differential of the LSFs [8] for vocal tract parame-
terization. The LSF training vector thus contained 31 values,
of which the first one was the first LSF, next 29 were the dif-
ferences between the adjacent LSFs, and the last one was the

Table 1: Speech features and the number of parameters.

Feature Parameters
Fundamental frequency 1
Energy 1
Harmonic-to-noise ratio 5
Voice source spectrum 10
Vocal tract spectrum 30–50
Pulse library 10–20 000 pulses

distance of the last LSF toπ. In order to get the distributions
of the differential LSFs more Gaussian, the square root of the
distances were used for training. In parameter generation, the
differential LSFs were equalized so that the sum of the 30 first
LSF distances matched the 31th, the distance toπ.

4.4. Parameter generation

Examining the trees, questions concerning the phrase style ap-
peared quite early, causing fragmentation. Low suspenseful
style sounded good, but the normal narrative style was too
enthusiastic and jumpy. To stabilize the voice, we consid-
ered adaptive training approach, but settled for just combin-
ing low and normal styles because of tight schedule. With
these changes, we obtained fairly intelligible final voice, yet
still in need of lot of post-filtering (formant enhancement) to
reduce the averaging effect. The test sentences were synthe-
sized applying both parameter generation considering global
variance (GV) and post-filtering. Looking at the results, the
post-processing probably went too far and some internal listen-
ing would have been in order. There was also a harsh, high-
frequency noise present in our voice. This was present already
in original recordings, but became more distracting in heav-
ily processed synthesis. Noise reduction should perhaps been
applied to training utterances. The differential LSFs with GV
seemed to also contribute to the problem, finding non-existing
formants in high frequency regions. GV was then selectively
applied to only lower order LSF coefficients, but the harsh qual-
ity still remained. In order to save listener’s ears, some room re-
verberation was added to final synthesized paragraphs, hoping
it would smooth the voice quality, but the results indicate that
this had not much effect.

4.5. Synthesis of speech waveform

The flow chart of synthesis stage is shown in Figure 4. In syn-
thesis, the voice source is reconstructed by selecting and con-
catenating pulses from the pulse library that yield the lowest
target and concatenation costs given the voice source param-
eters. This process is optimized with Viterbi search for each
continuous voiced segment.

Minimizing the target cost ensures that a pulse with desired
voice source characteristic, such as fundamental period, spectral
tilt, and amount of noise, is most likely to be chosen. The target
cost is the error between the voice source features generated
from HMMs and the ones that are linked to pulses in the pulse
library. The target cost is composed of the mean square error
of each feature, normalized by mean and variance across the
pulse library, and weighted by individual target cost weights for
each feature. Minimizing the concatenation error ensures that
adjacent pulse waveforms are not too different from each other,
providing a smooth speech quality without abrupt changes. The
concatenation error is the mean square error between adjacent
pulse waveforms. In order to prevent selecting the same pulse
in a row, leading to buzzy excitation, an small bias is introduced
to the concatenation cost of the pulse with itself.

The target and concatenation costs can be weighted in-
dividually to produce a smooth but accurate excitation. Af-
ter the selection, the pulses are scaled in energy and overlap-
added according to fundamental frequency to create a continu-
ous, natural-like excitation. Although the selection process will
most likely select pulses with approximately correct fundamen-
tal period, the pulses can be optionally interpolated to correct
length. An example of the excitation and the resulting speech
signal is shown in Figure 5.
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The unvoiced excitation is composed of white whose gain
is determined according to the energy measure from HMMs.
Formant enhancement [9] is applied to the vocal tract LSFs in
order to alleviate for the over-smoothing of statistical modeling.
Finally, LSFs are converted back to LPC coefficients describing
the vocal tract spectrum V(z) and used for filtering the com-
bined excitation.

5. Results and discussion
5.1. MOS, similarity and intelligibility

As expected, the results on naturalness and similarity of our
submission were low, being on the lower third group of all sub-
missions. The naturalness of our system was hurt by the wrong
choice of training material and the overcompensation of the ini-
tial bad quality by post-processing, resulting in artificial tone of
voice. The similarity score was additionally affected by the se-
lection of original utterances in listening test, which were sim-
ilar in recording and speech quality to the two books excluded
in training our system.

With the help of more direct modeling of formants with dif-
ferential LSFs, we were able to achieve top intelligibility, but
then again, the other scores were probably adversely affected
by losing the exact positions of LSFs. The intelligibility results
are shown in Fig. 6. Our system is marked with letter D.

5.2. Paragraphs

The interesting part of this year’s challenge was the synthe-
sis and fine grained listening test of audio book paragraphs.
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Figure 6:Intelligibility results (D - GlottHMM).

The questions asked from listeners covered specific aspect of
prosody as well as overall quality. Here, apart from pleasant-
ness, which was scored low, our system fared better. Especially,
our prominence and break labeling and prediction were favor-
ably judged, as the opinion scores of stress and pauses were
high above our level in the MOS test, among the top systems
(see Figs. 7 and 8). Overall, it was positive to find out that
the listeners were apparently able to analytically judge differ-
ent aspects of speech; an important result considering prosody
assessment of synthesis.

6. Conclusions

This year’s challenge was very difficult, made even more chal-
lenging for us by the bad choice of training data. The noisy
recordings were hard for our IAIF based vocoder, the large vari-
ability of styles for HMM training, and the paragraph length
utterances for prosody prediction. Regardless, in light of the re-
sults, we were able to achieve a clean, intelligible voice with
decent above average prosody characteristics. In the future,
we will work on improving the robustness of the vocoder and
the pulse library method, as well as prosody annotation with
unsupervised methods. Also, retaining speaker characteristics,
which could be our strong point with detailed source modeling,
has not been very successful in these challenges, and should be
improved. Finally, it could be that more interesting, focused re-
search might have been made if the number of new topics were
more limited. For example, studio quality audio book data could
have provided enough challenge.

7. Acknowledgements

This research is supported by the EC FP7 project Simple4All
(287678), Academy of Finland (1128204, 1218259, 121252,
135003 LASTU), MIDE UI-ART, and Tekes.



E
xc

ita
tio

n

 

 

Natural
Synthetic

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Time (ms)

S
pe

ec
h

 

 
Natural
Synthetic

Figure 5:Black line shows an estimated glottal flow signal (upper) of speech segment /ho/ (lower). Red line shows the corresponding
synthetic glottal flow signal (upper) and speech segment (lower). Theexcitation is gradually changed from round pulses of breathy /h/
to sharp excitation peaks of modal /o/ due to the selection of appropriate pulses from the pulse library.

258 494 486 488 485 491 487 486 492 486 490n

A C F I B H G D J E K

0
10

20
30

40
50

60

Mean Opinion Scores (audiobook paragraphs − stress) 
 All listeners

System

S
co

re

Figure 7:Stress assignment results (D - GlottHMM).

8. References
[1] Raitio, T., Suni, A., Yamagishi, J., Pulakka, H., Nurminen, J.,

Vainio, M. and Alku, P., “HMM-based speech synthesis utiliz-
ing glottal inverse filtering”, IEEE Trans. on Audio, Speech, and
Lang. Proc., 19(1):153–165, 2011.

[2] Suni, A., Raitio, T., Vainio, M. and Alku, P., “The
GlottHMM speech synthesis entry for Blizzard Challenge
2010”, The Blizzard Challenge workshop, 2010. Online:
http://festvox.org/blizzard

[3] Raitio, T., Suni, A., Pulakka, H., Vainio, M. and Alku, P., “Uti-
lizing glottal source pulse library for generating improvedexcita-
tion signal for HMM-based speech synthesis”, ICASSP, 2011,pp.
4564–4567.

[4] TreeTagger. Online: http://www.ims.uni-stuttgart.de/projekte/
corplex/TreeTagger/DecisionTreeTagger.html

[5] Vainio, M., Suni, A. and Sirjola, P., “Accent and prominence in
Finnish speech synthesis”, Specom, 309–312, Oct. 2005.

[6] Alku, P., “Glottal wave analysis with pitch synchronousiterative

258 494 486 488 485 491 487 486 492 486 490n

A C F I B H G D J E K

0
10

20
30

40
50

60

Mean Opinion Scores (audiobook paragraphs − speech pauses) 
 All listeners

System

S
co

re

Figure 8:Pause results (D - GlottHMM).

adaptive inverse filtering”, Speech Communication, 11(2–3):109–
118, 1992.

[7] Alku, P, Tiitinen, H. and N̈aäẗanen, R., “A method for generat-
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