
The Lessac Technologies Hybrid Concatenated System for
Blizzard Challenge 2012

Reiner Wilhelms-Tricarico, Brian Mottershead, John Reichenbach, Gary Marple

Lessac Technologies, Inc., USA

{reiner.wilhelms, brian.mottershead, john.reichenbach, gary.marple} @lessactech.com

Abstract
Lessac Technologies has developed a technology for
concatenated speech synthesis based on a novel approach for
describing speech in which expressivity, voice quality, and
speaking style are fundamental. The main aspect of our system is
that instead of traditional phonetic symbols, we use a much more
fine-grained and richer set of entities called Lessemes to describe
speech and to label units, which allow a richer and more precise
characterization of speech sounds. The front-end portion of our
synthesizer translates plain input text into a sequence of these
units by syntactic parsing and applying a set of rules developed
from expertise. We use a Bayesian method to obtain a particular
trainable mapping from linguistic and prosodic features encoded
in the Lessemes to a trajectory in the acoustic parameter space.
Unit selection consists of selecting the best candidate units from a
data base to match them to the target trajectory, while minimizing
discontinuities between them.

Index Terms: Speech Synthesis, Blizzard Challenge, Lesseme.

1. Introduction
This is our third entry to the Blizzard Challenge. For 2012 , the
Blizzard Challenge voice corpus was based on a set of four Mark
Twain audio book recordings from librivox.org (A Tramp
Abroad; Life on the Mississippi; The Adventures of Tom
Sawyer; and The Man That Corrupted Hadleyburg, and Other
Stories), all read by John Greenman. As part of the Challenge,
Toshiba Research Europe provided each Blizzard participant with
automatically segmented and aligned data with a confidence
factor for the alignment for each prompt. The original recording
length in mp3 format for all four books combined runs to just
over 50 hours.

For Blizzard Challenge 2011, Lessac had supplied the
“Nancy” voice corpus to each participant as the basis of the
challenge. For Blizzard Challenge 2012, we used similar voice
building techniques to build the “Greenman” voice. Except for
the approach we took to selecting which portions of the
“Greenman” voice corpus to use in building our voice, we used
our current standard approach to building a voice for a Lessac
TTS, and we used our standard approach to synthesize the test
data. The major advances between 2011 and 2012 have been
further improvements in (1) pitch marking based on a neural
network, and (2) our hierarchical mixtures of experts approach to
predict desired acoustic parameters.

Section 2 describes the approach we took to selecting
the portions of the voice corpus to use in our synthesizer. Section
3 provides a description of our text-to-speech system. Section 4
explains the Lessac process of building the “Greenman” voice. In
the first half of Section 4, we explain the approach we used in
developing the pre-cursor elements of building a synthesizer,
such as prompts, pitch-marks, and phonetic labels. In the second
half of Section 4, we outline how we used the data available in
the “Greenman” voice corpus to build our complete Lessac text-

to-speech synthesis system. Results from the listening test and
related discussion can be found in Section 5.

2. Approach to Corpus Selection
As narrated, the four Mark Twain books took John Greenman
more than 50 hours to read aloud; however, in our submitted
voice, we used only 17.1 hours of speech, 5,152 prompts from
“The Man that Corrupted Hadleyburg, and Other Stories”, and
4,935 prompts from “A Tramp Abroad” All of these prompts
were at the 100% prompt alignment level based on Toshiba’s
automated alignment.

Lessac has built a half dozen TTS voices from similar
audio book data. We use a semi-automated tool we have
developed to segment the voice recordings into sentences or
prompts. The user listens to the voice recordings while
simultaneously being presented with the text, on a sentence by
sentence basis, and then repeatedly presses a key as he hears the
end of each sentence. Since this cannot be done entirely
accurately the first time through, this is followed with a second
clean-up tool where the user is presented with a small amount of
wave data (both graphically and audibly), and he can add, move
or delete each sentence segmentation break. However, in order to
get clean data, it requires listening to the equivalent of the entire
recording twice. Since we did not want to invest more than 100
additional hours to get cleanly segmented data, we decided to use
the Toshiba automated segmentation.

We analyzed the Toshiba segmentation by listening to a
number of examples, and found that only the prompt
segmentation with 100% confidence level was accurate enough to
use, so we eliminated all portions of the provided voice corpus
that did not have a 100% confidence level. We also eliminated
prompts with foreign words.

We built a voice from the nearly 30 remaining hours of
the voice corpus that Toshiba had segmented at a 100%
confidence level using our standard automated voice-building
approach, and submitted this voice as our Blizzard demonstration
voice in 2011. However, we were concerned that this
demonstration voice had a number of undesirable characteristics.

Upon further exploration, we discovered that “Life on
the Mississippi” was recorded with something that sounds like a
fan noise in the background. We used signal processing to
eliminate this background noise. While we could perceptually
eliminate the fan noise, concatenated joins between units drawn
from this book joined to units drawn from other books were too
often jarring. We also eliminated Tom Sawyer because of the
extensive use of dialect, which was not very well handled by our
dictionary; we did not want to invest the time to expand our
dictionary to encompass all of the eccentric dialectical spellings
used in Tom Sawyer.

3. Lessac Technologies Text-to-Speech System
Similar to other systems, Lessac Technologies text-to-speech
system consists of two main components: the front-end, which
takes plain text as input and outputs a sequence of graphic
symbols, and the back-end, which takes the graphic symbols as
input to produce synthesized speech as output. In what follows,

we briefly discuss the properties that distinguish our system from
others and, we believe, play an important role in producing
expressive synthesized speech.

3.1 Use of Lessemes

Successful production of natural sounding synthesized
speech requires developing a sufficiently accurate symbolic set of
sound representations that can be derived from the input text, and
that relate the input text to be pronounced with the corresponding
synthesized speech utterances that are heard by the listener.
Rather than adopting traditional symbolic representations, such as
IPA, SAMPA, or ARPAbet, Lessac Technologies has derived an
extended set of symbolic representations called Lessemes from
the phonosensory symbol set for expressive speech as conceived
by Arthur Lessac [1]. The Lesseme system for annotating text
explicitly captures the musicality of speech, and from the start
avoids the artificial separation of prosodic and linguistic features
of speech.

In their basic form and meaning, Lessemes are
symbolic representations that carry in their base form segmental
information just like traditional symbolic representations. To be
able to describe speech more accurately and to include in the
symbol set information that is not carried by a typical phonetic
symbol, each base Lesseme can be sub-typed into several more
specific symbols which then represent phonetic information
found in traditional phonetic symbols plus descriptors for co-
articulation and suprasegmental information. Acoustic data
demonstrate different properties of a set of Lessemes which are
normally collapsed under one phonetic label in other systems [2].

For General American English, with the present
Lesseme specification, there can be as many as 1,500 different
Lessemes. Compared to other sets of representations which
usually contain about 50 symbols, Lessemes allow more fine-
grained distinction of sounds. Units of the same type share
closely similar acoustic properties. By having supra-segmental
information directly encoded in Lessemes, we believe our system
can target available units for concatenation better than a system
with a relatively impoverished intonation annotation scheme.
This should be useful especially when trying to produce
expressive speech from a very large database.

3.2. Front-end with extensive linguistic knowledge

The front-end which derives Lessemes from plain text
input is a rules-based system. The rules are based on expert
linguistic knowledge from a wide variety of fields including
phonetics, phonology, morphology, syntax, light semantics, and
discourse. Simplistically, the Lessac front-end labels text,
building from, at the lowest level, letters, spaces and punctuation
marks. These letters, spaces and punctuation marks are
interpreted by the front-end, and assembled as syllables, words,
phrases, sentences, and paragraphs to be spoken, along with
context-aware labeling for appropriate co-articulations,
intonation, inflection, and prosodic breaks.

First, the input text is processed by a syntactic parser
which generates the most likely syntactic tree for each sentence,
and tags words with part-of-speech (POS) information. In the
next step, words are transcribed by use of a pronunciation
dictionary into base Lessemes accompanied by lexical stress.
Homograph disambiguation based on POS tags takes place at this
step. Subsequent processing steps modify the base Lessemes by
making successive decisions based on the overall phrase and
sentence structure. In particular, prosodic breaks are inserted in
meaningful places by taking into consideration factors such as
punctuation, phrase length, syntactic constituency, and balance.
In most phrases, an operative word is marked which carries the

highest pitch prominence within the phrase. In addition,
Lessemes are assigned inflection profiles and one of two degrees
of emphasis. Context-based co-articulations across word
boundaries are also captured. The result is a full Lesseme for each
sound which encodes expressive intonational content in addition
to the segmental information found in traditional phonetic
symbols.

The front-end process is able to develop a complete
Lesseme label stream with plain normally punctuated text as the
sole input. This Lesseme stream is delivered to the signal
processing back-end.

3.3. Voice database construction

In addition to the machine readable form used as the
input to the signal processing back-end, Lessemes are also used in
creating new voices, namely to automatically generate a human
readable graphic output stream which can be thought of as
annotated text plus a musical score, as illustrated in figure 1.

Figure 1: Lessac Technologies annotated text

In the annotation, vowel orthographic forms are

designated with Arthur Lessac’s phonosensory symbols.
Consonant orthographic forms are marked with information
indicating whether the consonant is sustainable (double
underlined) or percussive, i.e. pronounced with a brief contact
within the mouth (single underlined), as well as how the
consonant is linked to the next sound in connected speech. The
musical score on top of the orthographic forms depicts notes
which represent the intonation pattern that a person with
sufficient voice training can follow. Each syllable corresponds to
a note. Higher notes are pronounced with higher pitch. Large
notes define stressed syllables while small notes refer to
unstressed syllables. Some notes are further specified with an
inflection, which reflects a particular shape of pitch movement
within the syllable.

During the voice database construction, the text to-be-
recorded is first processed by the front-end, yielding the stream of
Lessemes. In building a full Lessac voice, the resulting stream is
then transformed into a human readable form, as seen in figure 1,
which we use as the combined script and score for the trained
voice talent during the recordings. The way the voice talent
records the prompts is controlled by the annotated text and
musical score. The recordings of the prompts are then segmented
and labeled with the same Lessemes that underlie the script and
score that the voice talent followed. The fact that the same
Lessemes are output for the voice talent script as well as the
labeling of the database creates a direct link between each speech
snippet and its Lesseme label, thus a high degree of
correspondence between the symbols and the sounds as actually
recorded by the voice talent.

However, for Lessac TTS voices constructed from
audio book data, such as the “Greenman” voice, such a high
degree of symbol-to-sound correspondence is not guaranteed.
Using our current voice-building techniques, unless the voice
building process includes a labor intensive manual notation
process, the symbol-to-sound correspondence reflects only the
expert knowledge contained in our front-end. Our front-end

prosody represents an idealized “reportorial” prosody, which
although relatively accurate for most speakers, is only one of
many speaking styles that a voice actor could use to read the text.

We make use of this correspondence in the unit
selection process by evaluating units in the data base according to
the context dependent linguistic and prosodic features, in order to
preselect a subset of unit candidates, which are then evaluated by
the model described in the following.

3.4. Hierarchical Mixture of Experts for mapping
linguistic features to acoustic parameters

To enhance methods for target cost calculation and unit
selection, we apply the Hierarchical Mixture of Experts (HME)
model [3] [4] to learn the parameters of a statistical model of the
relationship between the Lesseme representation of the input text
and the ideal acoustic observables in the recordings.

A functional diagram of the HME model is shown in
figure 2.

Figure 2: Hierarchical Mixture of Experts model.

(E: experts, G: gates, x: input, y: output)

The HME model applied to the problem of mapping

prosodic features to acoustic observables makes use of the
interpretation of the model as a parameterized mixture of
Gaussians. Each expert in the model represents one multi-
dimensional normal distribution with a variable expectation
vector that depends on the input x. The parameters for each
expert also include a full covariance matrix that is estimated and
updated during the training. Each block of experts in a group or
clique (Figure 2 shows 3 experts in each of 2 cliques) together
with a gating network represent one mixture of Gaussians
whereby the mixture coefficients are computed in the gates as a
function of the input. Multiple groups of experts can be combined
by another gate in a similar way. The complete network
represents a mixture of Gaussians whose parameters are trained
from pairs of known input and output. During the learning
process, the parameters in the experts and gates are adjusted so
that, for a given known input x, the probability of obtaining the
desired known output y is maximized over all available data.

In our application of the HME model, the input x
includes the linguistic and prosodic features and the output y are
acoustic observables, which include MFCC's, F0, duration, and
intensity, mostly the same type of parameters used in database
segmentation, see 4.3 below. The model is applied and trained as
a recurrent system, which means that the predictions of acoustic
observables, y[n], for one sound at time index n are included in
the input x[n+1] for the prediction of the next y[n+1].

We use supervised learning with the HME model to
map linguistic feature sequences to a trajectory in the acoustic
parameter space, which is represented by via points and for some
of the parameters their velocity or rate of change. The structure of
the model is shown in figure 3. The system steps through a
sequence of Lessemes and predicts for each Lesseme the vector
of acoustic parameters that specify the unit, whereby the input to
the model consists of the feature information of the previous, the
current and the next two Lessemes. Further, by feeding back the
previously predicted acoustic parameter vectors as input to the
model, the model becomes partially auto-regressive. This
facilitates the learning task because the model only has to learn to
predict the current acoustic vector conditioned on the last two
acoustic vectors and the input linguistic features. Learning
proceeds in two phases. Initially, the looped-back input to the
model consists of the actual acoustic vectors until the model
begins to converge. Then, training is continued by having the
predictions for the last two time slots become inputs for the
prediction of the current time slot. Learning then proceeds by
repeatedly processing a large number of sentences in the
database, until the error variance cannot be lowered further.

Figure 3: Recurrent and partially auto-regressive prediction of
intonation contour and other acoustic targets by HME

During the target cost calculation process, we compute

the cost as the distance of the acoustic parameters of a candidate
unit from the ideal trajectory, which is in turn directly predicted
from the linguistic feature variables. This distance measure makes
use of the predicted mixture covariance matrix which is obtained
by combining the experts' covariances according to the gating
weights, (see Figure 2). To reduce processing time, we reduce the
number of candidates first by applying a rapid search with binary
patterns generated from some of the features, and then compute
the exact target cost for a smaller subset of close candidates.
Since the HME provides the parameters of a probability density
in the acoustic parameter space, we compute for the remaining
candidates their probability under this distribution and use as
target cost a penalty that is proportional to the negative logarithm
of the candidates' probability.

Using the Lesseme representation of speech sounds, the
output of the front-end results in a large number of features,
which is augmented further by bundling neighboring features as
shown in figure 3. The HME model overcomes the sparsity
problem in the acoustic database by mapping the Lesseme
features and context onto the acoustic parameter space as a target
trajectory. At the same time it automatically provides a variable
metric near the target trajectory, against which the candidates in
the data base are matched during unit-selection.

4. Building the 'Greenman' Voice
Unlike in Blizzard Challenge 2011, where all of the other
Blizzard Challenge entrants were using a voice corpus supplied
by Lessac, for 2012, we had to build a new voice, and did not
have the advantage of being able to use one of our already
existing TTS voices. The following briefly describes the steps
that were taken to create the “Greenman” voice.

4.1. Transcription to Lessemes

Lessac Technologies has developed an automated rules
based method more fully described in our Blizzard Challenge
Workshop 2011 paper that allows us to automatically generate the
Lesseme sequence from arbitrary text. This provides the input
information for the synthesizer's back-end.

4.2. Pitch-Marking

We have observed that minimal pitch mismatches can
cause noticeable synthesis artifacts. Based on this empirical
experience, we feel that highly accurate pitch-marking is critical
to high quality synthesis. Since we do not have the manpower to
manually review and adjust pitch-marks, we put a significant
portion of our technical effort over the past year into better
automated pitch-marking.

Synthesis artifacts can often be minimized by slightly
adjusting pitch around the join point, such that the mean pitch at
the ends of the units to be joined is the same. However, herein is
a dilemma: If the specific pitch marks are not accurate, then we
can assume the adjustment of pitch will also be inaccurate, and
there will be a noticeable synthesis glitch at the join point..

In our speech synthesizer, we make use of pitch marks
that are usually specified as the first zero crossing from negative
to positive signal amplitude after the point of excitation of the
vocal tract.

For pitch marking we formerly used the software tool
Praat on a standalone basis, but found it (for this voice and
others) fairly inaccurate for certain sound classes. In particular,
for the low F0 portions of the “Greenam” voice, Praat often
specified too many pitch marks.

Basic approach to pitch marking

Using Burg's method, we compute 17 Parcor
coefficients from the speech signal which is sampled at 16 kHz
for each interval of 320 samples (20ms) weighted by a Hanning
window, and generate the error signal in an overlap-add method
proceeding 1/2 of the window length at each step. The residual or
error signal shows peaks of energy near the points of glottal
excitation, which are more readily picked out by instead using the
Hilbert envelope of the signal. The Hilbert transform provides the
complex valued analytic signal, whereby the real part is the signal
itself, and the imaginary part the Hilbert transformed signal. The
Hilbert envelope is the absolute value of the analytic signal,
which is strictly positive and therefore simplifies identifying
signal peaks. Pitchmarks are then found by searching in the
speech signal for zero crossings with positive slope near the
maximal peaks. This method usually works well for all fully
phonated vowel sounds, but is not completely reliable for nasal
sounds and the lateral L sound. The “Greenman” voice used for
this challenge has some irregular phonations and occasionally has
very low F0, which could easily be taken as double and triple
excitation of the vocal tract, leading to incorrectly determined
additional pitch markers.

Group delay time improves robustness

The problem of finding and eliminating the additional
superfluous pitchmarks in each cycle can be overcome if the

duration of the glottal cycle is known with greater confidence. A
somewhat more reliable estimate of the glottal cycles can be
obtained by using in addition to the magnitude of the error
function, the local group delay function, computed for each
sample from the error signal. This was proposed in by P. S.
Murthy & B. Yegnanarayana [5]. The authors proposed a spectral
method to compute the short term average group delay time from
the error signal, which is computationally rather expensive. In
our adaptation of this idea, we compute a similar function,
starting from the residual signal. It is motivated by the fact that
the differentiation of the Laplace transform of the signal with
respect to instantaneous frequency is equivalent in the time
domain to a multiplication of the signal by the (negative) time
parameter. A simplification is obtained by taking into account
that the amplitude spectrum of the residual signal is
approximately flat, allowing one to avoid the spectral
normalization step in the original article. In our procedure we
take a short interval of duration T (usually 10ms) around the
current sampling point and translate the center to the time t=0.
The signal portion e(t) over this interval from -T/2 to +T/2 is then
multiplied by -t, with -T/2 < t < T/2, and summed over the
interval from -T/2 to T/2. The implementation is done by a fast
convolution method with overlap add, which is faster than the
calculation in the time domain. The resulting (quasi-) group delay
time function, in the following denoted g(t), usually shows an
almost periodic behavior, and readily exposes the periodicity of
the original speech signal.

A further improvement of the signal g(t) is obtained by
performing an amplitude normalization in the time domain,
explained for the example portrayed in Fig. 4.

Figure 4: Pitchmarks derived with Group Time Delay

The signal labeled A in figure 4 is a small portion of
speech signal. In this example it is a 100 ms portion of speech
near the end of the word "serves", showing the transition into the
voiced “s” at the end of the word. The signal labeled B is the
magnitude (Hilbert envelope) of the error signal. The error signal
(not shown) was used to compute the group delay time function
g(t), labeled C in the figure. The signal labeled D is obtained by
lowpass filtering of g(t) and dividing by its Hilbert envelope.
Taking again the Hilbert transform of the signal shown as D, the
phase function E is obtained. It is portrayed here as a saw-tooth
function by taking its modulo 2π, but is actually computed as an
unrolled phase, which also allows us to detect phase jumps that
sometimes occur in rapid transitions of the speech signal. We thus
have a clean definition of the instantaneous pitch period duration.
To obtain pitch marks, within each interval of phase change by

2π, we look for the maximal point of excitation in the magnitude
of the residual (B) for the nearest zero crossing with positive
slope.

Improve pitch marking with neural network

The method described above is a slight improvement
over using Praat, but to make it 100 percent reliable takes a lot of
additional tweaking.

For a given voice it is usually possible to find problems
by inspection and build special code that reduces the errors, for
example by inventing rules governing the selection among
ambivalent pitch markers. Usually a lot of additional threshold
parameters need to be tweaked to get satisfactory results.

An improvement can be made by making use of a
neural network that learns constraints for generating pitch marks,
and thus learns to predict the rough position of pitch marks
directly from the speech signal.

Usually, the mistakes made by a conventional pitch
marking algorithm, including our own, reveal themselves only by
close inspection of a large number of samples. However, with a
sufficiently accurate pitch marking algorithm it is usually
possible to find by direct inspection of the results a large set of
speech samples for which pitch marking is error-free.

We then train a neural network based on only these
examples. The neural network we are using is a standard multi-
layer perceptron with two hidden layers and one input layer. It
makes use of hyperbolic tangent output non-linearities. The
neural network receives as input several consecutive samples
from the speech signal, several samples from the error signal and
its magnitude, and in the case of the feed forward network, the
Parcor coefficients used for computing the residual signal. The
technique is explained by an example shown in Figure 5.

Figure 5: Use of a Neural Network for pitchmarks

In this figure 5, signal A is a short portion of speech

signal, and signal B is the magnitude of the error function
(Hilbert envelope). The pitch marks, which are already given
here, are shown as vertical lines through the plot. During network
training, a signal exemplified as C in the figure is computed as
follows: For each pitch mark in the training set, the closest
maximum of the error magnitude function is searched in a small
interval of 2.5 ms before the pitch mark. At this position, which
usually coincides with the actual local maximum of the
magnitude signal, a bell shaped signal is generated and added to
an array that is initialized with all zeros. The resulting signal C
provides the learning target for the neural network. The neural
network is trained to approximate the signal C, using the
difference between its output and the learning target as a learning
signal in a standard back propagation algorithm. After training
the network output (signal D in Figure 5) can be treated as a spike

signal not unlike the original residual magnitude signal, and pitch
marking is then done in the usual way by finding the nearest zero
crossing points. For a large data set, we set aside a manageable
training set (typically 200 to 500 short prompts), for which pitch
marks already exist by other means or from the methods
described earlier, but excluding all examples with faulty pitch
marks. The network is then trained on the selected training set.
After training and after it has been verified that the neural
network accurately reproduces the pitch marks from the training
set, the neural network is used to pitch mark the remaining
prompts.

4.3. Database creation

As our labeling and metrics for prosodic structure are
different from methods commonly used; we modified the Festival
feature functions to produce relevant linguistic features at
segment, syllable, word, and phrase levels based on the Lessemes
and prosodic breaks that the front-end provides as output. The
end time of each unit came from the label files produced by
automatic segmentation. Our segmentation procedures are based
on a slightly modified version of the EHMM software that is part
of speech tools and Festvox. Acoustic parameters were computed
for each prompt, and a dimensionality reduction was obtained by
principal component analysis. The resulting set of parameters
were then used in building the HMM model for segmentation. For
building the catalogue, all the linguistic features coming from the
front-end analysis and the acoustic parameters were collected into
a binary catalog file, which was then used to train the HME
model off-line. The same binary catalogue is called by the
synthesizer during run-time.

4.4. Synthesizer

While Lessemes help narrow the pool of candidates for
unit selection and enable more precise targeting, labeling units
with Lessemes can lead to the problem of non-existing or a sparse
number of units of particular labels in the database, especially in
a small database. We handle this problem by incorporating a set
of fail-over rules. Whenever the target Lesseme has a very limited
number of or even no matching candidates in the database, the
fail-over rules look for closely matched Lessemes, e.g., those
with a different inflection or pitch level, to include among the
candidates for the target and join cost calculations. The target cost
is computed as a weighted distance to the acoustic target
trajectory that is generated by the HME model. The target penalty
cost is derived from a logarithmic probability that can be
computed for each candidate using the parameters provided by
the HME model, namely target acoustic feature vector and
covariances.

Similar to Kominek [6], our join cost calculation
discourages joins between sonorant sounds. The join penalty
varies depending on the types of sonorants being joined. For
example, the join between two vowels gets a higher penalty than
the join between a vowel and an onset lateral sound. We also
make use of the HME output, namely the variance information, to
modulate the spectral weights used in the join cost computation.

4.4. Concatenation

After the best units are selected, they are concatenated
together in a process that works entirely in the time-domain. For
this we no longer use Festival but instead built a separate module
which receives only the information about the units to be
concatenated. The concatenation of voiced sounds is done pitch
synchronously, and some mutual adjustments of two sounds that
are concatenated are made to increase the coherence and to
reduce clicks and warbles. F0 modifications and duration

modifications are also done independently of Festival in the
concatenation module, using information that is transmitted to the
concatenation module from the HME model.

5. Results and Discussion

Ten systems participated in the Blizzard Challenge 2012. In
addition, the original speaker’s voice was evaluated as a
benchmark, or pseudo eleventh system (system A). System B was
a benchmark Festival unit selection systems built by CSTR. The
Lessac Hybrid Concatenation unit selection system was system F.
During the online evaluation of the task, listeners were asked: (i)
to judge how similar a system was to the original speaker; and (ii)
to provide mean opinion scores (MOS) representing how natural
or unnatural the utterances sounded. This task was done on
different scales for both single sentences (0-5 scale as done in
previous Blizzard Challenges), and short paragraphs (0-60 scale,
new for Blizzard Challenge 2012), In addition each listener was
asked to listen to synthesized semantically unpredictable
sentences (SUS) and transcribe what they heard. The listeners
included paid participants, volunteers, speech experts, plus native
and non-native English speakers. Results for our system in
comparison with natural recorded human speech, the benchmark
Festival unit-selection system and others systems are presented
below.

5.1. Naturalness and similarity to original speaker -
sentences

A 5-point mean opinion scale (MOS) was used to
evaluate both how natural synthesized speech sounds, and how
similar synthesized speech sounds to the original voice when the
synthesizer was reading aloud single sentences. This is the same
methodology as used in previous Blizzard Challenges. With
respect to naturalness of our synthesized speech, Lessac (system
F) received a mean MOS score of 3.4 for all data and a median of
4. For similarity to the original speaker, we received a mean score
of 3.4 and median of 3. Overall we were ranked in second place,
based on pair-wise Wilcoxon signed rank tests. One system
(system C) ranked higher on a statistically significant basis than
our system and all others.

5.1. Naturalness and similarity to original speaker -
paragraphs

A 60-point mean opinion scale (MOS) was used to
evaluate both how natural synthesized speech sounds, and how
similar synthesized speech sounds to the original voice. With
respect to naturalness of our synthesized speech, Lessac received
a mean and median MOS score of 32 for all data. Overall we
were ranked in second place, based on pair-wise Wilcoxon signed
rank tests. One system (system C) ranked higher on a statistically
significant basis than our system and all others.

5.3. Word error rates

For the semantically unpredictable sentences (SUS) we
received a median word error rate of 17% and a mean rate of
27%. The Wilcoxon signed rank test resulted in little information
that would give a significant rank ordering of the different
systems. Based on the Wilcoxon signed rank test, our word error
rate is worse than natural recorded speech, and comparable to the
other systems (worse than one, and better than three to a
statistically significant degree). In other words, for nonsense
sentences our system has similar word recognition rates as most
other systems.

6. Conclusions
We have made good progress in producing near natural sounding
synthesized human speech highly similar to the original speaker.
We attribute much of this progress to our recent improvements in
pitchmarking, and further enhancements to our HME approach.

We are also pleased that the listening results show that
our system rendered short paragraphs perceptually better than
single sentences. We believe this would likely be even more so
the case for longer paragraphs, and book length texts.

We are also pleased that we were able to maintain our
high ranking in this year’s challenge; we have shown that the
Lessac approach is fairly flexible. Blizzard 2011 was contested
with the “Nancy” voice, which was supplied by Lessac. The
Nancy voice corpus was carefully recorded using Lessac
methods. The “Greenman” voice was not recorded using Lessac
methods, yet we retained our high placement in Blizzard
Challenge 2012.

The overall performance of our system as one of the
best in the Blizzard Challenge (2nd, closely followed by another
system) gives us some confidence in support of our general
strategy to try to represent and capture in the synthesis model
idiosyncratic properties of the original voice that are not directly
represented by known explicit models. For the symbolic
representation of speech sounds for synthesis we use a novel
method that is a departure from traditional phonetics by
introducing Lessemes, which carry both segmental and
suprasegmental information and allow for much more fine
grained tagging of speech. This tagging process is done fully
automatically, starting from plain text. The processing done by
the front-end results in a very rich stream of features that are
encoded with the speech samples in the acoustic database. We use
methods of machine learning to create a sufficiently
comprehensive model of the voice without having to make too
many assumptions about the nature of the relationship between
acoustic parameters and perceived prosody.

Our hope is to demonstrate that since all of our voice
building processes are fully automatic, and we do not rely on any
manual pitch-marking, segmentation or labeling processes,
Lessac techniques can be used to build multiple near natural
human sounding synthetic voices quickly.

Participating in the Blizzard Challenge has proven very
helpful for us in guiding further improvements of our
technologies.

7. References

[1] Lessac, A., The Use and Training of the Human Voice: A Bio-
Dynamic Approach to Vocal Life, McGraw-Hill, 1996.

[2] Nitisaroj, R. and Marple, G. A., "Use of Lessemes in text-to-speech
synthesis", in M. Munro, S. Turner, A. Munro, and K.
Campbell [Eds], Collective Writings on the Lessac Voice and
Body Work: A Festschrift, Llumina Press, 2010.

[3] Jordan, M. I. and Jacobs, R. A., “Hierarchical Mixtures of Experts and
the EM Algorithm”, Neural Computation, 6:181-214, 1994.

[4] Ma, J., Xu, L. and Jordan, M. I., “Asymptotic Convergence Rate of
the EM Algorithm for Gaussian Mixtures”, Neural
Computation, 12:2881-2900, 2000.

[5] P. Satyanarayana Murthy and B. Yegnanarayana. Robustness of
group-delay-based method for extraction of significant instants
of excitation from speech signals. Speech and Audio
Processing, IEEE Transactions on, 7(6): 609–619, 1999.

 [6] Kominek, J., Bennett, C., Langner, B. and Toth, A., “The Blizzard
Callenge 2005 CMU Entry: A Method for Improving Speech
Synthesis Systems”, Proceedings of Interspeech 2005, 85-88.

