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Abstract
Lessac  Technologies  has  developed  a  technology  for 
concatenated speech synthesis based on a novel approach 
for describing speech in which expressivity, voice quality, 
and speaking style  are fundamental.  The main aspect of 
our system is that instead of traditional phonetic symbols, 
we use a much more fine-grained and richer set of entities 
called  Lessemes  to  describe  speech  and  to  label  units, 
which allow a richer and more precise characterization of 
speech sounds.  The front-end portion  of  our  synthesizer 
translates plain input text into a sequence of these units by 
syntactic  parsing  and  applying  a  set  of  rules  developed 
from expertise.  We  use  a  Bayesian  method  to  obtain  a 
particular  trainable  mapping  from  linguistic  and  prosodic 
features  encoded in  the Lessemes to  a  trajectory  in  the 
acoustic  parameter  space.  Unit  selection  consists  of 
selecting  the  best  candidate  units  from  a  data  base  to 
match  them  to  the  target  trajectory,  while  minimizing 
discontinuities  between  them.  For  the  voice  used  in  this 
Challenge  we  implemented  a  preliminary  model  for 
remapping  intonation  features  called  levels  based  on 
acoustic features.

Index  Terms:  Speech  Synthesis,  Blizzard  Challenge, 
Lesseme.

1. Introduction
This is our 4th entry to the Blizzard Challenge. For 2013 the 
voice recordings that served as a basis for the Challenge 
were supplied by Lessac. The voice recordings were audio 
books narrated by a speaker named Cathy. About 20 hours 
of  voice  data  were  supplied  in  wave  file  format  with 
associated text segmented to the sentence level; this is the 
same data that Lessac had previously used to make our 
Cathy voice. Lessac supplied over 175 hours of additional 
voice  recordings  narrated  by  the  same  speaker  in  mp3 
format without associated text. The competition consisted 
of two parts. In the first task, EH1, each competitor built a 
voice making use of only the voice material  that  we had 
used to make our first voice of Cathy; therefore we simply 
used without modification our existing Cathy voice. 

For the second task, EH2, 
we extended the voice by 38 percent by adding the material 
from 4825 additional prompts to the 9728 prompts included 
in  our  original  voice,  making  it  14553  prompts  in  total. 
These prompts are usually individual sentences but often 
the prompts can be two or more shorter sentences. For the 
most part, we used the same technology for this extended 
voice, but we made some effort to adjust the annotations of 
both  the  old  prompts  and  the  new  prompts  by  mainly 
statistical methods, described in detail in this report. 

2. Approach to Corpus Selection

Lessac has built a half dozen TTS voices from similar audio 
book  data.  We  use  a  semi-automated  tool  we  have 
developed to segment the voice recordings into sentences 
or prompts. The user listens to the voice recordings while 
simultaneously  being  presented  with  the  text,  on  a 
sentence by sentence basis, and then repeatedly presses a 
key  as  he  hears  the  end  of  each  sentence.  Since  this 
cannot be done entirely accurately the first time through, 
this is followed with a second clean-up tool where the user 
is  presented  with  a  small  amount  of  wave  data  (both 
graphically and audibly), and he can add, move or delete 
each sentence segmentation break. However,  in order to 
get clean data, it requires listening to the equivalent of the 
entire recording at  least twice.  We expanded the original 
database provided to all participants by adding the entire 
three part series from Pride and Prejudice,  from which a 
total of 4825 prompts were used. 

3. Lessac Technologies Text-to-Speech 
System

Similar to other systems, the Lessac Technologies text-to-
speech system consists of two main components: the front-
end,  which  takes  plain  text  as  input,  and  outputs  a 
sequence  of  graphic  symbols,  and  the  back-end,  which 
takes the graphic symbols as input to produce synthesized 
speech as output. In what follows, we briefly discuss the 
properties that distinguish our system from others and, we 
believe,  play  an  important  role  in  producing  expressive 
synthesized speech. 

3.1 Use of Lessemes
Successful  production  of  natural  sounding 

synthesized  speech  requires  developing  a  sufficiently 
accurate symbolic set of sound representations that can be 
derived from the input text, and that relate the input text to 
be pronounced with the corresponding synthesized speech 
utterances  that  are  heard  by  the  listener.  Rather  than 
adopting traditional symbolic representations, such as IPA, 
SAMPA, or ARPAbet, Lessac Technologies has derived an 
extended set of symbolic representations called Lessemes 
from the phonosensory symbol set for expressive speech 
as conceived by Arthur Lessac [1]. The Lesseme system 
for  annotating  text  explicitly  captures  the  musicality  of 
speech, and from the start avoids the artificial separation of 
prosodic and linguistic features of speech. 

In  their  basic  form and meaning,  Lessemes are 
symbolic  representations  that  carry  in  their  base  form 
segmental  information  just  like  traditional  symbolic 
representations.  To  be  able  to  describe  speech  more 
accurately and to include in the symbol set information that 
is  not  carried  by  a  typical  phonetic  symbol,  each  base 
Lesseme  can  be  sub-typed  into  several  more  specific 
symbols which then represent phonetic information found in 
traditional  phonetic  symbols  plus  descriptors  for  co-



articulation and suprasegmental information. Acoustic data 
demonstrate  different  properties  of  a  set  of  Lessemes 
which are normally collapsed under one phonetic label in 
other systems [2].

For  General  American  English,  with  the  present 
Lesseme  specification,  there  can  be  as  many  as  1,500 
different  Lessemes.  Compared  to  other  sets  of 
representations  which  usually  contain  about  50  symbols, 
Lessemes  allow  more  fine-grained  distinction  of  sounds. 
Units  of  the  same  type  share  closely  similar  acoustic 
properties. By having supra-segmental information directly 
encoded in Lessemes, we believe our system can target 
available units for concatenation better than a system with 
a  relatively  impoverished  intonation  annotation  scheme. 
This  should  be  useful  especially  when trying  to  produce 
expressive speech from a very large database.

3.2.  Front-end  with  extensive  linguistic 
knowledge

The front-end which derives Lessemes from plain 
text input is a rules-based system. The rules are based on 
expert  linguistic  knowledge  from a  wide  variety  of  fields 
including  phonetics,  phonology,  morphology,  syntax,  light 
semantics, and discourse. Simplistically, the Lessac front-
end labels text, building from, at the lowest level, letters, 
spaces and punctuation marks. These letters, spaces and 
punctuation  marks  are  interpreted  by  the  front-end,  and 
assembled  as  syllables,  words,  phrases,  sentences,  and 
paragraphs to be spoken, along with context-aware labeling 
for  appropriate  co-articulations,  intonation,  inflection,  and 
prosodic breaks.

First,  the  input  text  is  processed by  a  syntactic 
parser  which generates  the most  likely  syntactic  tree for 
each sentence, and tags words with part-of-speech (POS) 
information. In the next step, words are transcribed by use 
of  a  pronunciation  dictionary  into  base  Lessemes 
accompanied by lexical stress. Homograph disambiguation 
based on POS tags takes place at this step. Subsequent 
processing  steps  modify  the  base  Lessemes  by  making 
successive  decisions  based  on  the  overall  phrase  and 
sentence  structure.  In  particular,  prosodic  breaks  are 
inserted in meaningful places by taking into consideration 
factors  such  as  punctuation,  phrase  length,  syntactic 
constituency, and balance. In most phrases, an operative 
word is marked which carries the highest pitch prominence 
within  the  phrase.  In  addition,  Lessemes  are  assigned 
inflection  profiles  and  one  of  two  degrees  of  emphasis. 
Context-based co-articulations across word boundaries are 
also captured. The result is a full Lesseme for each sound 
which encodes expressive intonational content in addition 
to  segmental  information  found  in  traditional  phonetic 
symbols. 

The  front-end  process  is  able  to  develop  a 
complete  Lesseme  label  stream  with  plain  normally 
punctuated text as the sole input. This Lesseme stream is 
delivered to the signal processing back-end.

3.3. Voice database construction
In addition to the machine readable form used as 

the input to the signal processing back-end, Lessemes are 
also used in creating new voices, namely to automatically 
generate a human readable graphic output stream which 
can be thought of as annotated text plus a musical score, 
as illustrated in figure 1.

Figure 1: Lessac Technologies annotated text

In  the  annotation,  vowel  orthographic  forms  are 
designated  with  Arthur  Lessac’s  phonosensory  symbols. 
Consonant orthographic forms are marked with information 
indicating  whether  the  consonant  is  sustainable  (double 
underlined)  or  percussive,  i.e.  pronounced  with  a  brief 
contact within the mouth (single underlined), as well as how 
the  consonant  is  linked  to  the  next  sound  in  connected 
speech. The musical score on top of the orthographic forms 
depicts notes which represent the intonation pattern that a 
person  with  sufficient  voice  training  can  follow.  Each 
syllable  corresponds  to  a  note.  Higher  notes  are 
pronounced with higher pitch. Large notes define stressed 
syllables  while  small  notes  refer  to  unstressed  syllables. 
Some notes are further specified with an inflection, which 
reflects  a  particular  shape  of  pitch  movement  within  the 
syllable.

During  the voice database construction,  the text 
to-be-recorded is first processed by the front-end, yielding 
the stream of Lessemes. In building a full Lessac voice, the 
resulting stream is then transformed into a human readable 
form, as seen in figure 1, which we use as the combined 
script  and  score  for  the  trained  voice  talent  during  the 
recordings. The way the voice talent records the prompts is 
controlled  by the annotated  text  and musical  score.  The 
recordings of the prompts are then segmented and labeled 
with the same Lessemes that underlie the script and score 
that  the  voice  talent  followed.  The  fact  that  the  same 
Lessemes are output for the voice talent script as well as 
the labeling of the database creates a direct link between 
each speech snippet  and its  Lesseme label,  thus a high 
degree of  correspondence between the symbols  and the 
sounds as actually recorded by the voice talent. 

However, for Lessac TTS voices constructed from 
audio book data, such as the “Greenman” voice from last 
year's challenge and even more so for the current "Cathy" 
voice,  such  a  high  degree  of  symbol-to-sound 
correspondence is not guaranteed. Using our current voice-
building  techniques,  unless  the  voice  building  process 
includes  a  labor  intensive  manual  notation  process,  the 
symbol to  sound correspondence reflects only the expert 
knowledge  contained  in  our  front-end.  Our  front-end 
prosody  represents  an  idealized  “reportorial”  prosody, 
which  although  relatively  accurate  for  most  speakers,  is 
only one of many speaking styles that a voice actor could 
use to read the text. 

We make use of this correspondence in the unit 
selection  process  by  evaluating  units  in  the  data  base 
according to the context dependent linguistic and prosodic 
features, in order to preselect a subset of unit candidates, 
which are  then evaluated by the  model  described in  the 
following. 

3.4. Hierarchical Mixture of Experts for mapping 
linguistic features to acoustic parameters 

To  enhance  methods  for  target  cost  calculation 
and  unit  selection,  we  apply  the  Hierarchical  Mixture  of 
Experts (HME) model [3] [4] to learn the parameters of a 
statistical model of the relationship between the Lesseme 



representation  of  the  input  text  and  the  ideal  acoustic 
observables in the recordings. 

A functional diagram of the HME model is shown 
in figure 2. 

Figure 2: Hierarchical Mixture of Experts model.
(E: experts, G: gates, x: input, y: output)

The  HME  model  applied  to  the  problem  of 
mapping prosodic features to acoustic observables makes 
use of the interpretation of the model as a parameterized 
mixture of Gaussians. Each expert in the model represents 
one  multi-dimensional  normal  distribution  with  a  variable 
expectation  vector  that  depends  on  the  input  x.  The 
parameters for each expert also include a full covariance 
matrix  that  is  estimated  and  updated  during  the  training 
process. Each block of experts in a group or clique (Figure 
2 shows 3 experts in  each of  2  cliques)  together  with a 
gating  network  represent  one  mixture  of  Gaussians 
whereby the mixture coefficients are computed in the gates 
as a function of the input. Multiple groups of experts can be 
combined by another gate in a similar way. The complete 
network  represents  a  mixture  of  Gaussians  whose 
parameters  are  trained  from  pairs  of  known  input  and 
output. During the learning process, the parameters in the 
experts and gates are adjusted so that, for a given known 
input  x,  the  probability  of  obtaining  the  desired  known 
output y is maximized over all available data.

In our application of the HME model, the input x 
includes the linguistic and prosodic features and the output 
y  are  acoustic  observables,  which  include  MFCC's,  F0, 
duration, and intensity, mostly the same type of parameters 
used in database segmentation, see 4.3 below. The model 
is applied and trained as a recurrent system, which means 
that the predictions of acoustic observables, y[n], for  one 
sound at time index n are included in the input x[n+1] for 
the prediction of the next y[n+1]. 

We use supervised learning with the HME model 
to map linguistic feature sequences to a trajectory in the 
acoustic  parameter  space,  which  is  represented  by  via 
points and for some of the parameters their velocity or rate 
of change. The structure of the model is shown in figure 3. 
The system steps through a sequence of  Lessemes and 
predicts  for  each  Lesseme  the  vector  of  acoustic 
parameters that specify the unit, whereby the input to the 
model consists of the feature information of the previous, 
the current and the next two Lessemes. Further, by feeding 
back the previously predicted acoustic parameter vectors 
as input to the model,  the model becomes partially auto-
regressive.  This  facilitates the learning task because the 
model  only  has  to  learn  to  predict  the  current  acoustic 

vector conditioned on the last two acoustic vectors and the 
input linguistic features. Learning proceeds in two phases. 
Initially, the looped-back input to the model consists of the 
actual acoustic vectors until the model begins to converge. 
Then, training is continued by having the predictions for the 
last two time slots become inputs for the prediction of the 
current  time  slot.  Learning  then  proceeds  by  repeatedly 
processing a large number of sentences in the database, 
until the error variance cannot be lowered further. 

Figure 3: Recurrent and partially auto-regressive prediction 
of intonation contour and other acoustic targets by HME

During  the  target  cost  calculation  process,  we 
compute  the  cost  as  the  distance  of  the  acoustic 
parameters  of  a  candidate  unit  from the  ideal  trajectory, 
which is in turn directly predicted from the linguistic feature 
variables.  This  distance  measure  makes  use  of  the 
predicted mixture covariance matrix which is obtained by 
combining the experts' covariances according to the gating 
weights,  (see  Figure  2).  To  reduce processing  time,  we 
reduce the number of candidates first by applying a rapid 
search  with  binary  patterns  generated  from some of  the 
features,  and  then  compute  the  exact  target  cost  for  a 
smaller  subset  of  close  candidates.  Since  the  HME 
provides  the  parameters  of  a  probability  density  in  the 
acoustic parameter space, we compute for the remaining 
candidates their probability under this distribution and use 
as target cost a penalty that is proportional to the negative 
logarithm of the candidates' probability. 

Using  the  Lesseme  representation  of  speech 
sounds,  the  output  of  the  front-end  results  in  a  large 
number of features, which is augmented further by bundling 
neighboring features as shown in figure 3. The HME model 
overcomes the sparsity problem in the acoustic database 
by  mapping  the  Lesseme features  and context  onto  the 
acoustic  parameter  space  as  a  target  trajectory.  At  the 
same time it automatically provides a variable metric near 
the target  trajectory,  against  which the candidates in the 
data base are matched during unit-selection. 

4. Building the 'Cathy' Voice
In the following we describe the work done on extending 
our existing 'Cathy' voice to create the voice used for the 
task EH2; for task EH1 we used our existing Cathy voice 
without any changes. Most of the techniques we used here 
are the same as those already applied in previous years, in 
particular a new method of pitch marking that we developed 
last year, and described in more detail in last year's report, 
was used with little change.
 

4.1.Automatic Relabeling of Lessemes.
The prosody of the audio recordings by Cathy are 

very often in contradiction to the prosodic rules that we are 



using  in  our  frontend.  The  type  of  prosody  that  we  call 
"reportorial" is a standard we had previously developed and 
used in all other voices. The core issue here is that our rule 
based prosody is supposed to be used in annotating the 
prompts before they are recorded. According to our design, 
the voice  model  used for  recording  should  be  trained in 
reading  the  specific  annotation  which  is  automatically 
generated  by  the  frontend,  as  described  in  the  previous 
section.  So  far,  we  have  only  done  this  our  first  voice, 
Nancy.  For  Nancy,  the  prompts  were  recorded  after 
rehearsing and careful checking of inconsistencies between 
prosodic  annotation  and  meaning.  In  some  cases,  the 
annotations were then corrected if the rule system used in 
the  frontend  resulted  in  phrasing  or  stress  patterns  that 
were  in  contradiction  to  the  intention  and  meaning  in  a 
sentence as perceived by the speaker.  This was not the 
case in last  year's competition with Greenman's Librevox 
voice, but our results were still quite good (2nd place in the 
overall ranking).  

By studying the recording material we found that 
the discrepancies between the frontend's output annotation 
of the material and the actually produced speech was much 
more  pronounced  for  Cathy's  recordings  then  it  was  for 
Greenman's  voice.  To  overcome  this  issue,  we  had  to 
choose  between  a  number  of  options.  We  could  either 
design a new rule system that would be more appropriate 
for Cathy's recordings, or we had to select only recorded 
sentences  that  followed  our  prosody  rules,  usually  just 
narrative  passages.  A  third  option  was  to  try  to  relabel 
many  of  the  Lessemes  so  that  their  physical  acoustic 
characteristics  were  more  properly  represented  in  the 
labels. The first option was too difficult to realize, given our 
resources and the time allocated to this task: The readings 
by  Cathy  are  extremely  variable.  There  are  many  long 
narrative passages that could fit within our already existing 
prosodic  model  labeled  "reportorial".  But  there  are  also 
many passages that can not really be subsumed under a 
single  prosodic  model.  In  particular,  the  audio  books 
contain  many dialogue situations  where Cathy reads the 
text  in  a  highly  expressive  manner,  often  emulating  or 
mimicking some quite eccentric people and facilitating the 
listener's  differentiation  of  their  different  idiosyncrasies. 
Given the variety in the recordings, we would need to build 
not only one new prosodic model but several. The second 
option, namely selecting only passages that we considered 
to be within  the reportorial  prosody was not successfully 
pursued  because  it  would  have  required  many hours  of 
listening,  re-listening,  and  reading  and  re-reading  of  the 
text. The main obstacle here was that there were simply too 
many  passages  where  it  was  too  difficult  to  make 
consistent decisions. The third option, automatic relabeling, 
is an experimental procedure requiring the least amount of 
direct  listing  and  editing,  so  we  built  a  preliminary 
implementation of this as the basis of our EH2 voice first.

Methods.
The  assumption  is  made  that  (binary)  linguistic  features 
obtained  from  the  analysis  of  the  text  and  used  in  the 
synthesizer  for  unit  selection  are  more  or  less  directly 
correlated with physical features such as intensity and pitch 
as  well  as  spectral  features  and  the  dynamics  of  their 
changes. The correlation of individual features with physical 
acoustic parameters can be expected to be fairly weak, with 
a  few  exceptions.  Yet,  in  combination,  there  is  mutual 
information between the linguistic features and the physical 
acoustic  observables.  Making  this  assumption  we 
attempted  to  "fix"  some of  the  linguistic  features  for  the 
Cathy  voice.  A  particularly  important  feature  in  our 

synthesizer  is  the  level  feature;  levels  are  mainly 
understood  as  grades  of  prominence.  In  the  current 
frontend rules for reportorial prosody, the level feature has 
only three values, {1,2,3}. They are effectively applied to a 
syllable but are attached to vowels in the syllable nucleus. 
A  separate  feature  is  stress  which  can  have the  values 
{L,H} and corresponds roughly to lexical stress. The level 
values are distinct from lexical stress but there is interaction 
between lexical stress and the level that a vowel receives in 
context,  but  the lexical  stress is usually  not  variant  (it  is 
directly derived from the dictionary together with, in some 
cases,  part  of  speech  information).  The  connection 
between  acoustic  features  and  the  level  feature  is  not 
straight forward and highly context dependent, and it  can 
not  simply  be  derived  from  just  taking  F0  and  intensity 
(energy) into account.

Since Cathy's voice was not recorded under the 
rule system that we used for our first voice, Nancy, it cannot 
be expected that the level feature (and several others) can 
be properly assigned by the frontend. So we built a simple 
information  structure  that  relates  some  of  the  linguistic 
features with acoustic features and with themselves,  and 
trained the details on the date from Nancy's voice which is 
by definition properly annotated. The hypothesis was that 
by using some of the linguistic features and some of the 
acoustical  features,  other  linguistic  features  could  be 
predicted. This model was realized by a combination of an 
auto-encoder  or  auto-associator  and  a  multi-layer 
perceptron, see figure 4. The auto-associator was trained in 
unsupervised  training  to  represent  the  high  dimensional 
and sparse linguistic feature vectors in a lower dimensional 
space, without significant loss of information, see [5]. We 
used several of the intrinsic features of the Lessemes of 
three  consecutive  segments,  and  some  more  supra-
segmental  features.  The  multi-layer  perceptron  has  two 
types of input, the output from the auto-encoder, and some 
acoustic  features  measured  for  three  consecutive 
segments,  namely  the  current,  the  preceding  and  the 
following segment. It was trained to predict merely the level 
of  the  central  Lesseme.  The  following  linguistic  features 
were used for consecutive Lessemes: For vowels: (vowel 
type {short,  long, diphthong,  schwa},  vowel height;  vowel 
frontness;  lip  rounding;  vowel  lexical  stress).  For 
consonants (12 bit consonant type pattern; a place feature; 

Figure 4. Network structure for computing level information.  
The input of the perceptron is a combination of acoustic  
features and the dimensionally reduced linguistic features.



consonant  sonority;  voiced/unvoiced information).  Pauses 
were also represented, using a choice of types represented 
by binary features. In these input features we attempted to 
use only features that do not depend on the level features. 
However,  we  used  the  lexical  stress  feature  which  is 
assumed here to be invariant from the prosody - as we are 
using the same dictionary for Cathy as for Nancy. However 
there  are  inherent  correlations  between  the  linguistic 
features, so the possibility cannot be completely excluded 
that the neural network learns to some extent rules that are 
imposed by the frontend.

The acoustic input variables for the network were 
derived from the measured durations, F0, and log intensity 
contours. Both intensity and F0 are scaled in such a way 
that the first two moments of their distributions are matched 
between  the  two  voices.  This  is  a  linear  transformation 
between  the  two  found  by  linear  fitting  cumulative 
histograms, with the result that for example an F0 value for 
Nancy of 200 Hz corresponds to 186Hz, and the axes are 
scaled  relative  to  each  other  by  a  scale  of  0.962.   The 
perceptron  has  three  outputs,  which  are  obtained  by 
applying a sigmoid function to the weighted sums of their 
inputs.  These  three  outputs  are  understood  as  the 
likelihood of the 1st, 2nd or 3rd level. 

The  two  networks  were  separately  trained.  The 
auto-encoder  is  trained  based  on  unsupervised  learning 
that  is  related  to  the  training  of  reduced  Boltzmann 
machines,  and  is  as  described  in  reference 5.  After  the 
learning of the auto-encoders is completed, its parameters 
are  kept  fixed,  and  the  perceptron  which  receives  the 
output of the auto-encoder and the acoustic parameters as 
input is trained by back propagation.

To make it less likely that consecutive Lessemes 
could  receive  both  level  3  or  that  there  were  too  many 
jumps between  levels,  the  output  of  the  perceptron  was 
used as input to a Viterbi algorithm that determines the final 
level of each vowel. For this, the parameters of the simplest 
possible  Markov model for level information were trained 
from Nancy's data. The Markov model had only three states 
corresponding  to  the  levels  1,  2  or  3.  The  data  from 
Nancy's voice were used to compute a matrix of transitional 
probabilities  between  the  levels  in  subsequent  vowels, 
ignoring  any  further  contextual  information.  A  Viterbi 
algorithm  then  combines  the  level  probability  from  the 
above  explained  network  structure  and  the  transitional 
probabilities,  and computes the sequence of  level values 
that maximizes the total probability along the path from the 
first to the last vowel of a sentence. 

After  the  training  is  completed,  this  model  was 
applied to the segmented database of the Cathy voice: For 
each prompt the frontend computes the Lesseme sequence 
and the supra-segmental features. Some of these features 
and  the  normalized  acoustical  parameters  are  then 
processed  by  the  complete  network  and  the  Viterbi 
algorithm to  compute  the  levels,  which  then  replace  the 
level information computed by the frontend. The approach 
was in part validated by inspection of the results, namely 
simply  by  comparing  the  level  values  computed  by  the 
frontend with those of the rewrite algorithm. It appeared that 
the choices of  the rewrite  algorithm were similar to what 
could be expected from listening to the prompts. 

5. Results 
In Blizzard Challenge 2013 we participated in  two tasks, 
EH1 and EH2. The label for our system was the letter N. 

Our new EH2 system ranked much higher on perceptual 
listening tests than our old EH1 system. For the EH1 task 
we used the same synthesis method as we had in Blizzard 
Challenge 2012,  in  this case using a voice database for 
Cathy that  we had already built  earlier.  While in Blizzard 
Challenge 2012, our system ranked in 2nd place (with the 
Greenman voice from Librevox), our 2013 EH1 system with 
the Cathy voice built using the same methods as our 2012 
system fell to roughly rank 7 in 2013. 

Given our approach to the EH1 task, there were 
effectively  two  benchmarks  which  allow  a  rough 
comparison  between  the  2012  and  2013  results.  The 
overall median raw scores of both our EH1 voice, and the 
Festival benchmark voice, system B, each fell by 10 points 
from 2012 to 2013, from 31 to 21 for our EH1 Voice, and 
from 27 to 17 for the Festival benchmark. Thus, it appears 
that  perceptual  listening  median  raw  scores  are  not 
invariant, but rather dependant on the overall quality of the 
systems entered. Higher median raw scores become more 
difficult  to  achieve  as  the  overall  quality  of  the  systems 
being compared improve.  Interestingly, this does not seem 
to apply to natural speech. In 2012, the original Greenman 
recordings  were  rated  46  by  listeners,  and  in  2013  the 
Cathy recordings were rated 49; both are close to a perfect 
50; the slight difference is probably attributable to the better 
overall quality of the professional Cathy recordings 

For the second task, EH2, where we extended the 
voice  database  and  used  automatic  relabeling  to  adjust 
prominence levels (see previous section) our results were 
better. Depending upon the specific attribute being ranked, 
there appears to be a group of 3 to 7 systems that usually 
have  the  highest  scores.  Given  that  our  system  was 
developed with prosody as one of  its core elements,  we 
tend  to  rank  slightly  higher  in  the  paragraph  versus 
sentence listening comparisons. For the overall paragraph 
ranking, our system is fourth in a group of seven systems 
that  are pairwise insignificantly  different  than the highest 
ranked  system L.  In  the  following  this  is  investigated  in 
more  detail  for  the  partial  tasks  of  EH2,  using  the  data 
provided by the statistical data from the pair-wise Wilcoxon 
signed  rank  tests.  We  restrict  ourselves  to  the  statistics 
labeled with "all listeners". In any of the subsequent ranking 
attempts it needs to be kept in mind that overall and in each 
subtask there are fewer ranks than participants because of 
ties. The system A, which is natural speech, was excluded. 

The rank ordering in the evaluation task "overall 
impression", shows our system (N) ranked 4th according to 
the  median  score.  However,  the  differences  within  the 
group  of  the  first  7  systems  with  the  highest  scores, 
corresponding to the system letters LKMNCIF (our system 
N is underlined) are all mutually insignificant, which can be 
seen from the pairwise significance matrices. 

For more specific attribute data, systems M and K 
always ranked above Lessac’s system N. Lessac ranked 
above the other four high ranking systems L, C, I and F on 
one or more of the measured attributes, and ranked above 
system F on all attributes.

For  the  listening  task  "pleasantness"  the  rank 
ordering  starts  with  MKNL, showing  our  system 3rd.  The 
difference to the first two, M and K, is significant, but the 
difference to system L is insignificant.  

For  the  "speech  pauses"  task  we  were  7th, 
whereby  the  difference  with  the  next  4  higher  or  equal 



ranking systems is insignificant and the differences to the 
next two systems with lower scores is insignificant. 

The listening task "stress" put our system 6th, whereby the 
difference  with  the  3rd through  5th and  7th through  9th 
scoring systems is insignificant. 

In the task "intonation", our rank is 4th tied with three other 
systems.  The  system  ranked  3rd is  better  but  with 
insignificant difference, while all systems with lower score 
are significantly different. 
 

For the task labeled "emotion", our system ranks 
4th.  The  rank  order  sequence  here  starts  with  MKLNCI, 
whereby  the  differences  to  the  system  L,  as  well  as  to 
systems C and I are insignificant. 

For  "difficulty  of  listening"  our  system ranks 6th,  but  with 
insignificant difference to the systems ranked 3rd, 4th and 5th. 
The difference between our system and all systems ranked 
lower was significant. 

For the partial listening task for sentences for task 
EH2,  which  were  either  from  news  or  from  novels,  the 
systems performed as follows.

The system ranking for “similarity to the original” 
was  MKNLC.  Our  system  N ranked  3rd.  The  difference 
between  systems  M,  K,  N,  and  L  was  insignificant.  All 
systems ranked below C were significantly different.

The system ranking for “naturalness” was KMLN. 
Our system N ranked 4th. The difference between K & M 
was significant, but the differences between M & L, and L & 
N were not significant, although the difference between M & 
N was significant. All systems ranked below our system N 
were significantly different.

For  the  semantically  unpredictable  sentences 
(SUS) for task EH2, we received a median word error rate 
of 28 percent and a mean rate of 33 percent. The Wilcoxon 
signed rank test showed no significant difference to most of 
the  other  systems  except  to  system  C  with  the  lowest 
median word error rate of 7% and to the next 5 systems 
with higher median word error rates of 14%. Interestingly 
the word error rates for our and most other systems were 
much  lower  when  listened  to  by  "paid  listeners"  (14/22 

percent median/mean) and higher when "speech experts" 
were listening (43/46). 

6. Conclusions
Overall our system's performance was close to or part of 
the group of  2-4 leading systems.  In  the partial  attribute 
tests, often the differences between the best 1 to 4 systems 
and our system were insignificant, but differences to most 
systems with lower scores were significant. 

The voice material used in the experiments was 
not typical for our methods of voice building. This was also 
the case in the Blizzard 2012 challenge, where our system 
ranked second,  but  this  time the disadvantages  of  using 
voice  material  that  was  not  recorded  according  to  the 
methods  underlying  our  design  were  more  manifest.  As 
explained in section 4, we made some attempt to relabel 
units to make better use of the speech material without the 
need to come up with a different design for prosodic rules 
that  could  have been more  appropriate  for  this  speaker. 
This automatic relabeling was partially successful but will 
need  further  study  and  refinement.  The  method  of 
relabeling only level  information was in some way rather 
crude.  In  particular,  the  Markov  state  model  could  have 
been more detailed by modeling the system dynamics of 
several  salient  intonation  features  together  and  taking 
consonantal context of the vowels into account not only in 
the static features but also in the Markov model. 
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