
Overview of SHRC-Ginkgo speech synthesis system
for Blizzard Challenge 2013

Yansuo Yu, Fengyun Zhu, Xiangang Li, Yi Liu, Jun Zou,
Yuning Yang, Guilin Yang, Ziye Fan, Xihong Wu

Speech and Hearing Research Center
Key Laboratory of Machine Perception (Ministry of Education)

Peking University, Beijing, 100871, China
{yuys}@cis.pku.edu.cn

Abstract
This paper introduces the SHRC-Ginkgo speech synthesis sys-
tem for Blizzard Challenge 2013. A unit selection based ap-
proach is adopted to develop our speech synthesis system using
audiobook speech corpus. Aiming at roughly labeled corpora
with several hundred hours of speech, our system adopts lightly-
supervised acoustic model training of speech recognition to s-
elect clean speech data with accurate text. Moreover, rich syn-
tactic contexts instead of prosodic structure are utilized to refine
traditional acoustic models. Through automatic syntactic pars-
ing, this way can also help to label the corpora of several tens or
even hundreds of hours automatically, thus avoiding manually
prosodic annotation with time-consuming and expensive effort.
In order to solve the problems of memory space expansion and
running time burden for acoustic model training of large-scale
corpora, a fast training method, which can ensure the accura-
cy of acoustic model, is realized. Subjective evaluation results
show that our system performs well in almost all evaluation test-
s, especially in the case of large-scale corpora.
Index Terms: speech synthesis, speech data selection, syntactic
parsing, unit selection

1. Introduction
We have been investigating many aspects of speech synthesis
technology for years, especially in Mandarin. We once attend-
ed the Mandarin tasks of Blizzard Challenge at 2009. And this
is our second entry to Blizzard Challenge. This year’s chal-
lenge involves lots of under-researched topics, such as subopti-
mal recordings, several hundred hours of same speaker’s speech
without fine labeling, novels with different styles in both di-
alogue and aside. Aiming at this situation, many novel tech-
nologies, including lightly-supervised acoustic model training
for speech data selection, speech labeling based on automatic
syntactic analysis and a fast model training approach with low
resources, are developed to construct our unit selection based
speech synthesis system.

The paper is organized as follows. Section 2 introduces
the basic situation of the English tasks in Blizzard 2013. An
overview of the system will be discussed thoroughly in Section
3. The results of the evaluation are further described in Section
4. Finally, the conclusion is drawn in Section 5.

2. The English Tasks in Blizzard 2013
In Blizzard Challenge 2013, the English evaluation consists of
two tasks as follows:

• EH1 - build a voice from the provided unsegmented au-
dio; text is not provided, so must be obtained by partici-
pants from the web and aligned with the audio.

• EH2 - build a voice from the provided segmented audio;
the accompanying aligned text may be used, or text may
be obtained from the web.

For both EH1 and EH2 tasks, the audiobook data is kindly pro-
vided by The Voice Factory, from a single female speaker. In E-
H1 task, this year’s challenge provides approximately 300 hours
of chapter-sized mp3 files. In EH2 task, approximately 19 hours
of non-compressed wav files are prepared and further labeled by
Lessac Technologies, Inc. This task remains the same way as
previous challenges. In the following sections we will introduce
the whole process of constructing the speech synthesis system
for both EH1 and EH2.

3. Overview of the System
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Figure 1: Flowchart of SHRC-Ginkgo speech synthesis system.

The overview of the text-to-speech (TTS) system, which
consists of both training and synthesis parts, is shown in Fig-
ure 1. At training stage, the clean speech with accurate text is
firstly chosen from roughly labeled corpora with several hun-
dred hours of speech by means of speech recognition and tex-
t alignment. Afterwards the acoustic features including spec-
tral envelope and F0 are extracted from this chosen speech and
the corresponding text are labeled with both phone-related and
syntax-related tags through text analysis and syntactic parsing
respectively. Based on these acoustic features and the context-
dependent labels, the corresponding HMMs are estimated in



the maximum likelihood (ML) sense [1]. At synthesis stage,
the context-dependent label sequence of synthesized text is first
predicted by the front-end text analysis and syntactic parsing.
Then this label sequence is adopted to choose optimal waveform
segment sequence from speech corpora under the statistical cri-
terions, such as maximum likelihood [2], minimum Kullback-
Leibler divergence (KLD) [3] or a combination of both crite-
rions [4]. Finally, all consecutive waveform segments in the
optimal sequence are concatenated to produce the synthesized
speech. The following subsections will introduce the whole sys-
tem in detail.

3.1. Data Preparation

3.1.1. Speech Data Selection

Through detailed analysis about the speech data of EH1 task,
it can be found that this corpus has the following characteris-
tics: (1) all data come from a number of novels or stories read
by the same person; (2) there are not accurate transcriptions a-
long with speech and these texts downloaded from the Internet
can’t be guaranteed to be consistent with the speech content;
(3) The average gain varies from one speech segment to an-
other due to different recording environment; (4) Because the
reader will employ various timbre and rhythm to show the char-
acteristics of the fiction roles, such as age, gender and mood,
speech segments from the dialogue or the aside differ widely
in both acoustic and prosodic aspects. Hence it’s necessary to
first choose “clean” speech data from raw corpus in order to
construct the following speech synthesis system (Here “clean”
speech data mainly means that the speech has both relative high
quality and quite accurate transcription).

Referring to [5, 6], the basic process of speech data selec-
tion is designed as follows. The whole process mainly adopts
the method of speech recognition based on transcription-related
language model (LM). This LM leads to the effect similar to
training set in the process of speech recognition. Based on this,
if the recognition result is not identical with raw transcription,
it’s likely that the transcription has the errors, such as inser-
tion error, deletion error or substitution error. Afterwards, the
word error rate (WER) for every sentence is calculated through
text alignment and the corresponding speech durations for each-
level WER are also obtained, as listed in Table 1. At last, all the
aside sentences, whose WERs are zero, are chosen as the final
training set for EH1.

Table 1: The WER result of text alignment as well as its corre-
sponding speech durations

Word error rate(%) Speech durations(hour)
0.0 214.02
≤ 0.1 262.39
≤ 5.0 291.95
≤ 10.0 292.26
≤ 20.0 292.38

3.1.2. Syntactic Parsing

In general, prosodic context referring to prosodic structure is
often selected as labels for the context-dependent HMMs. To
some extent, this way can capture the suprasegmental charac-
teristics of prosodic parameters. But more rich linguistic infor-
mation can not been recovered fully from this simple four-layer
prosodic structure. Therefore we attempted to introduce more

linguistic context from syntactic tree to represent the context-
dependent HMMs. In this paper, both internal grammar struc-
ture of the sentence and internal collocation relations among the
words [7] for syntactic tree are fully adopted to refine tradition-
al acoustic models. Here two categories of syntactic features
including grammatical types and position relations for phrases
of different levels are considered. Grammatical types mainly
involve the types of father phrase, grandfather phrase and oth-
ers for the previous, current and next words. For position rela-
tions, the relative and absolute positions among father phrase,
grandfather phrase and others of current word are included. At
last, conventional prosodic context are replaced by rich syntac-
tic context in the process of modeling acoustic parameters for
both EH1 and EH2. It is noted that our syntactic parsers are
trained using the Berkeley parser [8], which achieves high per-
formance across many languages.

3.2. Model Training

In training stage, spectrum (e.g., 39-ordered mel-cepstral co-
efficients and their dynamic features) and excitation (e.g., F0,
and its dynamic features) parameters are first extracted from the
speech database using STRAIGHT [9] and modeled by the cor-
responding context-dependent HMMs. These parameters are
further separated into different streams, in which mel-cepstral
coefficients are modeled by continuous HMMs while F0 obser-
vations are modeled by the MSD-HMMs [10]. Specially, a sin-
gle Gaussian distribution is adopted to model the distribution of
state duration. Finally, the context-dependent HMMs for each
stream are constructed using the decision-tree-based context-
clustering method with the minimum description length (MDL)
criterion.

Besides that, when the quantities of speech increase up to
one hundred or even several hundred hours, the conventional
training process of acoustic model [11] is not appropriate due
to the problems of both memory space expansion and running
time burden. First, a amount of full-context HMMs increased
dramatically lead to memory space expansion. Second, running
time burden mainly comes from both Baum-Welch reestimation
and model clustering based on decision tree for every stream. In
this paper, a fast training method, which can ensure the accura-
cy of acoustic model, is realized through the optimization of
conventional process of model training.

3.3. Speech Synthesis

A unit selection based approach, similar to [3, 4], is employed
to construct our speech synthesis system for EH1 and EH2. For
a whole sentence containing N phones, the selection criteri-
on combining the unit likelihood with the distance criterion is
adopted as in Equation (1). The unit likelihood mainly involves
the probability of acoustic observation on (spectrum and F0)
including static and dynamic features and phone duration dn
for the nth phone. Thus the optimal instance sequence u∗ can
be determined using Equation (1).

u∗ = argmax
u

N∑
n=1
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where un is one of the candidate units for the nth phone and
LL(un, λn) is the log likelihood of candidate unit un; wo and
wd are the likelihood weights of acoustic observation and phone
duration; Qn and λdur

n
denote the state allocation and the dura-

tion model for the nth phone respectively; S is the number of
states; c ∈ {s, p, d} represents the index of spectrum, F0 and
duration streams respectively and ti is the duration of the state i;
ω0, ω̃0 and ω1, ω̃1 are prior probabilities of the discrete and con-
tinuous sub-space (for spectrum and duration, ω0, ω̃0 ≡ 0 and
ω1, ω̃1 ≡ 1); N(mi,Σi) and N(m̃i, Σ̃i) denote the probabil-
ity density function of state i for model λn and λ̃n respectively.

To further speed up the subsequent search process, three
pruning techniques [12] including context pruning, beam prun-
ing and histogram pruning, are also employed in the process of
pre-selection. Then dynamic programming search can be ap-
plied to find the optimal unit sequence in the above maximum
likelihood sense. Finally, the cross-fade technique [13] is adopt-
ed to smooth the phase discontinuity at the concatenation points
and the waveforms of every two consecutive units in the optimal
sequence are concatenated to generate the synthesized speech.
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Figure 2: Results of MOS on speaker similarity for EH1.

4. Results and Discussion
This section will discuss the evaluation results of our system in
Blizzard Challenge 2013 in detail. Our system is identified as
M, whereas system A, B and C are benchmark systems. System
A is the natural speech, system B is the Festival unit selection
benchmark system and system C is the HTS statistical paramet-
ric benchmark system.
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Figure 3: Results of MOS on speaker similarity for EH2.

4.1. Similarity test

Figure 2 and Figure 3 shows the results of similarity scores of
all systems for EH1 and EH2. It can be seen that our system
achieves the best similarity to original speaker for EH1 and E-
H2. Moreover the results of Wilcoxons signed rank tests fur-
ther show that the difference between system M and any other
systems on similarity is significant at 1% level for EH1. The
high similarity score of our system can be attributed to use the
original segment of a large corpus, even though there are no
modifications to adapt concatenated units to new context.

4.2. Naturalness test

Figure 4 and Figure 5 shows the results of MOS on natural-
ness of all systems for EH1 and EH2. As we can see, our sys-
tem achieved the best performance (not including the natural
speech system A) on naturalness among all the participant sys-
tems. And the Wilcoxons signed rank tests also show that the
difference between M and any other participant systems on nat-
uralness is significant.

4.3. Intelligibility test

Figure 6 and Figure 7 shows the results of the overall word er-
ror rate (WER) test of all systems for EH1 and EH2. The results
show that our system achieves the 3th and 4th lowest WER a-
mong all the systems for EH1 and EH2 respectively. And as
well as previous Blizzard Challenge evaluations, the intelligi-
bility of HMM-based parametric synthesis method usually can
achieve better performance than unit selection methods.

4.4. Paragraph test

In addition to three above tests, 60-point mean opinion scale
(MOS) tests was further conducted to evaluate different aspect-
s of novel paragraph, such as overall impression, pleasantness,
speech pauses, stress, intonation, emotion, and listening effort.
These evaluation results show that our system is the best sys-
tem for EH1 and top-3 system for EH2 in all the seven aspects.
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Figure 4: Results of MOS on naturalness of sentences for EH1.

Figure 8 and Figure 9 shows the results of MOS on overall im-
pression of all systems for EH1 and EH2. It can be seen that
the our system obtains more advantage on performance than the
other systems as the speech data increases. This benefits from
two aspects: first, our system could choose more clean speech
data corresponding to accurate text from roughly labeled corpo-
ra with several hundred hours of speech; second, rich syntactic
contexts may model complex prosodic variations more accu-
rately than prosodic structure in the case of large corpora.

5. Conclusions
This paper introduces the development of the SHRC-Ginkgo
speech synthesis system for Blizzard Challenge 2013. Many
new technologies are exploited to construct our unit-selection
speech synthesis system for the non-standard speech database.
This system could realize automatically cleaning and labeling
of large-scale corpora by means of speech recognition, text
alignment and syntactic parsing. The evaluation results of Bliz-
zard Challenge 2013 further indicate that our system can gen-
erate more natural synthesized speech in the novel domain than
the other systems, especially in EH1. Some important problems
of the audiobook synthesis are still needed to be solved in the
future work, such as emotion expression of different roles, fast
training of acoustic model based on large-corpora, and so on.
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Figure 6: Results of word error rate (WER) for EH1.
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Figure 7: Results of word error rate (WER) for EH2.
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Figure 8: Results of MOS on overall impression of audiobook
paragraphs for EH1.
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Figure 9: Results of MOS on overall impression of audiobook
paragraphs for EH2.


