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Abstract

We describe the synthetic voices entered into the 2014 Bliz-
zard Challenge by the SIMPLE4ALL consortium. The 2014
Blizzard Challenge presents an opportunity to test and bench-
mark some of the tools we have been developing to address the
problem of how to produce systems in arbitrary new languages
with minimal annotated data and language-specific expertise on
the part of the system builders. We here explain how our tools
were used to address these problems on the different tasks of
the challenge, and provide some discussion of the evaluation
results. Several additions to the system used to build voices
for the previous Challenge are described: naive alphabetisation,
unsupervised syllabification, and glottal flow pulse prediction
using deep neural networks.
Index Terms: statistical parametric speech synthesis, unsu-
pervised learning, vector space model, glottal inverse filtering,
deep neural network, glottal flow pulse library

1. Introduction
We here describe the synthetic voices entered into the
2014 Blizzard Challenge by the SIMPLE4ALL consortium.
SIMPLE4ALL is a research project whose goal is to create
speech synthesis technology that learns from data with little
or no expert supervision.1 As was true of the previous Chal-
lenge’s spoke task, this year’s Challenge provides an opportu-
nity to test and benchmark technology which has been devel-
oped within the project. A central concern of SIMPLE4ALL is
how to produce systems in arbitrary new languages with min-
imal language-specific expertise on the part of the system
builders.

A major part of the SIMPLE4ALL software is a set of
tools to construct TTS front-ends which make as few implicit
assumptions about the target language as possible, and which
can be configured with minimal effort and expert knowledge
to suit arbitrary new target languages. We consider it impor-
tant for speech technology to venture beyond the handful of
the world’s languages where resources such as text normalis-
ers, lexicons and part-of-speech taggers already exist, and our
tools support such development. The tools rely on resources
which are intended to be universal, such as the Unicode char-
acter database, and use unsupervised learning to exploit unla-
belled text resources without the need for human annotation.
Task IH1 is a test of our tools which tackle this problem, as
the consortium members have little language-specific expertise

1www.simple4all.org/

and no language-specific resources for the target languages (As-
samese, Gujarati, Hindi, Rajasthani, Tamil and Telugu) beyond
the data provided by the Challenge. The tools have been supple-
mented by two new modules since our previous Blizzard entry.
The first of these naively performs alphabetisation of alphasyl-
labic scripts by making use of the Unicode database, and the
second performs unsupervised syllabification from text.

As with our previous Blizzard entry [1], this year’s entry
makes use of another part of the SIMPLE4ALL toolkit, an im-
plementation of new speech signal models capable of modelling
a large variety of speaking styles and vocal emotions [2]. A re-
cent innovation in this part of the toolkit used in the entry is a
deep neural network for predicting glottal flow pulse shapes.

2. Hub Task System Description
2.1. Text processing

The tools used for building TTS front-ends for entries to all
parts of the challenge are based on the ones used in last year’s
Challenge [1] with two major extensions.

The only language-specific input to our system is the data
used for training. For the IH1 voices, this consisted of the ap-
proximately 2 hours of audio data per language plus plain or-
thography transcription at the utterance level distributed for the
Challenge (except for Telugu, in which approximately 3 hours
of audio data were made available). In addition, we made use
of large quantities of unannotated text data for building word
representations in an unsupervised manner – this consisted of
approximately 0.7, 3.2, 16.0, 8.6 and 8.4 million tokens of text
for Assamese, Gujarati, Hindi, Tamil and Telugu, respectively,
which we obtained from Wikipedia. We were not able to obtain
any such data for Rajasthani – for this language we built word
representations using only the transcripts of the audio data.

Text which is input to the system is assumed to be UTF-8
encoded: given UTF-8 text, text processing is fully automatic
and makes use of a theoretically universal resource: the Uni-
code database. Unicode character properties are used to to-
kenise the text and characterise tokens as words, whitespace,
punctuation etc. Our front-ends currently expect text without
abbreviations, numerals, and symbols (e.g. for currency) which
require expansion; however, the lightly supervised learning of
modules to expand such non-standard words is an active topic
of research [3].

For our entry to the previous Challenge, we used a letter-
based approach, in which the names of letters are used directly
as the names of speech modelling units. In the past this has
given good results for languages with transparent alphabetic



orthographies such as Romanian, Spanish and Finnish [4, 5].
Whilst performance on alphasyllabic Brahmic scripts in last
year’s challenge was reasonable, we decided to improve intelli-
gibility by using some very general knowledge of script type to
create a naive alphabetisation of text input based on characters’
names in the Unicode database.

The method used to alphabetise a word is as follows. Take
for example the first token occurring in the distributed data for
Hindi, prasid’dha, meaning ‘famous’:

!"स$
The Unicode representation of this token consists of eight enti-
ties whose names are as follows:

• DEVANAGARI LETTER PA

• DEVANAGARI SIGN VIRAMA

• DEVANAGARI LETTER RA

• DEVANAGARI LETTER SA

• DEVANAGARI VOWEL SIGN I

• DEVANAGARI LETTER DA

• DEVANAGARI SIGN VIRAMA

• DEVANAGARI LETTER DA

This representation already abstracts away from the ligatures
and variable ordering of the surface devanagari text. For exam-
ple, the <pra> conjunct is represented by the sequence <pa vi-
rama ra> and the graphical right–left ordering of the elements
<sa> and <i> is changed to the left–right direction of the rest
of the text. The alphabetic representations used in these names
(PA, RA, SA etc.) give a transcription which is used instead of
the Unicode characters, but several simple rules which capture
general knowledge about this family of scripts are used to mod-
ify the string of letters obtained. A LETTER’s inherent vowel is
altered when a modifier follows, a modifier being any letter with
VOWEL SIGN in its name, or VIRAMA, ANUSVARA or CAN-
DRABINDU. Vowel signs are used to replace the preceding let-
ter’s inherent vowel, VIRAMA to delete it, and ANUSVARA and
CANDRABINDU to nasalise it (which we represent by append-
ing m to the modified vowel). Applying these rules to the above
example yields the sequence P R A S I D D A actually used
for training our system. Note that the same rules were used in
all languages, and no language-specific rules were added. For
example, no effort was made to predict deletion of schwa in
Hindi – the word-final <a> in the above example remained in
the alphabetised version of the text, although it is deleted in the
spoken form of the word.

A further addition to our system for this year’s challenge
was a simple module for imposing syllable-structure in an unsu-
pervised way. As proposed by Mayer [6], we first detected char-
acters corresponding to vowels and consonants with Sukhotin’s
algorithm [7] from the alphabetised text. The algorithm works
on the assumption that in natural languages, vowels and conso-
nants tend to alternate, and the most frequent letter corresponds
to a vowel.

Then, all word initial consonant clusters with certain mini-
mum frequency were collected to be considered as legal syllable
onsets also within words. Syllable boundaries were then placed
before the maximal legal onsets within word internal consonant
clusters, except that at least one consonant was left as a coda of
previous syllable if the cluster contained more than one conso-
nant. Vowel sequences were also split with syllable boundary,
if the mutual information of adjacent vowels in text corpus was
below a certain threshold.

Cursory internal evaluation during development showed the
alphabetisation described to have a clearly positive effect on re-
sulting synthetic speech. The effect of syllabification seemed
to be mixed: a neutral to slightly negative effect on segmen-
tal quality is suspected, but possibly accompanied by a slight
improvement to prosody.

As in last year’s entry, our front-end makes use of no expert-
specified categories of letter and word, such as phonetic cat-
egories (vowel, nasal, approximant, etc.) and part of speech
categories (noun, verb, adjective, etc.). Instead, features that
are designed to stand in for such expert knowledge but which
are derived fully automatically from the distributional analy-
sis of unannotated text (speech transcriptions and Wikipedia
text) are used. The distributional analysis is conducted via
vector space models (VSMs); the VSM was originally applied
to the characterisation of documents for purposes of Informa-
tion Retrieval. VSMs are applied to TTS in [4], where mod-
els are built at various levels of analysis (letter, word and ut-
terance) from large bodies of unlabelled text. To build these
models, co-occurrence statistics are gathered in matrix form to
produce high-dimensional representations of the distributional
behaviour of e.g. word and letter types in the corpus. Lower-
dimensional representations are obtained by approximately fac-
torising the matrix of raw co-occurrence counts by the applica-
tion of singular value decomposition. This distributional analy-
sis places textual objects in a continuous-valued space, which is
then partitioned by decision tree questions during the training of
TTS system components such as acoustic models for synthesis
or decision trees for pause prediction. For the present voices, a
VSM of letters was constructed by producing a matrix of counts
of immediate left and right co-occurrences of each letter type,
and from this matrix a 5-dimensional space was produced to
characterise letters in the alphabetised training text (obtained as
described above). Token co-occurrence was counted with the
nearest left and right neighbour tokens (excluding whitespace
tokens); co-occurrence was counted with the most frequent 250
tokens in the corpus. A 10-dimensional space was produced to
characterise word tokens.

Letter representations were used directly as features in deci-
sion tree based acoustic modelling. Word representations were
used by decision trees (along with other features such as pres-
ence of punctuation) to predict pauses at the junctures between
words. Data for training these trees are acquired automatically
by force-aligning the training data with their transcriptions, and
allowing the optional insertion of silence between words.

Note that our system includes two characterisations of let-
ters in different modules – the unsupervised division of letters
into vowels and consonants in the syllabification module, and
the unsupervised continuous features used to characterise letters
in acoustic modelling. There is no reason the vowel/consonant
features could not also be used in acoustic modelling directly,
but this was not done for the voices submitted to the Challenge.

2.2. Acoustic Modelling

A rich set of contexts was created using the results of the analy-
sis described in section 2.1 for each letter token in the alphabe-
tised training data for all languages. Features used include the
identity of the letter and the identities of its neighbours within
a 5-letter window. Additional features were the VSM values
of each letter in the window, and the distance from and until a
word boundary, pause, and utterance boundary.

The GlottHMM vocoder [2] parametrization was used for
all voices, consisting of glottal inverse filtering of the speech
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Figure 1: Overview of the DNN-based voice source modelling
method used in the hub entries.

frame and extracting the 30 line spectral frequency (LSF) coef-
ficients of the vocal tract as well as 10 voice source LSF coeffi-
cients, harmonic-to-noise ratio (HNR) of five frequency bands,
energy, and fundamental frequency (F0). Similarly to our previ-
ous entry, vocal tract LSFs were converted to mel-cepstral rep-
resentation for HMM training.

For the IH1 voices, the HMM models were trained with
the standard HTS 2.0 [8] recipe, modified for additional Glott-
HMM streams, but using three iterations of decision tree clus-
tering instead of two. For each voice, the voice source esti-
mated by glottal inverse filtering was segmented to two-pitch
period glottal flow derivative pulses using glottal closure in-
stant (GCI) detection, windowed with the Hann window, and
resampled to a constant length of 25 ms (400 samples at 16 kHz
sampling rate). Gender-dependent glottal flow pulse libraries
(one for the 5 males and one for the Tamil female) were con-
structed from the pulses of all six speakers, consisting around
4 million pulses for the male library and one million for the fe-
male. Then, a deep neural network (DNN) was trained to create
a mapping between the 47-dimensional acoustic feature vectors
extracted by the vocoder and the 400-dimensional glottal flow
pulses using a method described in [9, 10]. The DNN-based
voice source modelling method is illustrated in Figure 1. The
DNN consisted a of an input layer with 47 units, two hidden
layers each with 200 sigmoid units, and a linear output layer of
400 units, respectively.

At synthesis time, parameter generation is performed con-
sidering global variance, with stream-dependent thresholds.
Generated mel-cepstral coefficients are converted back to the
LSF form for stability checking and vocoding purposes. The
generated acoustic features were fed to the trained glottal flow
pulse prediction DNN, which generated a glottal flow pulse ap-
propriate for the context. The generated pulses are resampled to
length corresponding to the current F0, scaled in magnitude,
and finally noise is added to the pulse in the five frequency
bands according to the HNR measure to control the degree of
voicing. Finally, the generated pulse sequence is filtered with
the vocal tract filter to generate speech.

3. Spoke Task System Description
The spoke task in Blizzard 2014 involves synthesising bilingual
speech for a target speaker from a script where native script is
interspersed with non-native words, as is commonly encoun-
tered in a lot of Indian language texts which contain English
words, acronyms and numerals. The main challenge here is that
the training data for building a target voice is available only in
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Figure 2: Telugu words error rates on hub task.

the native language, and there are no recordings available for
the speaker in English.

3.1. Cross-lingual speaker adaptation with dual frontend

The SIMPLE4ALL system for the spoke task primarily involves
adapting an Indian accented English voice to the target speaker
in an unsupervised manner. A dual frontend is used for process-
ing the text in Indian languages and English separately. A block
diagram of this approach is shown in Fig. 5.

3.1.1. Model Training using Cross-lingual Speaker Adaptation

The systems were built using some of the existing speech syn-
thesis building blocks in a rapid fashion. The English model
sets for the speakers were built using the cross-lingual speaker-
adaptation tools developed in the EMIME project [11]. An un-
supervised approach was used for speaker adaptation, based on
probabilistic state mapping [12]. The Indian-accented English-
speaker KSP from the Arctic corpus was used as the base voice
for adaptation. The voice was trained using full-context la-
belling provided by the Festival UniGAM module. The model
clustering in voice training was done in two steps. In the first
step, decision trees were grown with questions referring only to
triphone contexts. In the second step, the tree was grown further
using the whole set of full-context related questions. Gaussians
at the leaf nodes of the tree were trained in the normal way. Af-
ter the training, a triphone model was generated by combining
all the leaves in the decision tree that happened to be under the
triphone-related question into a Gaussian mixture model. This
model was then used as a phoneme loop recogniser to anno-
tate the Indian language training data with an English phonetic
transcription. The triphone transcription was was mapped to a
full-context label transcription using a dictionary of alternative
pronunciations, and used for training CMLLR adaptation ma-
trices in the standard fashion. To keep the adaptation simple,
the deep neural network-based voice source modeling used in
the HUB task was not used, and Indian language models were
trained separately for this task with the standard GlottHMM fea-
tures [2].
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Figure 3: Telugu naturalness scores on hub task.

3.1.2. Bilingual speech synthesis using dual front-end

At synthesis time, full-context labels for the bilingual text are
generated for the Indian language and English parts of the sen-
tence separately using the dual front-end system. The Ossian
front-end is used to process the test sentences wherein the En-
glish part is also transcribed in the Indian language script us-
ing a pronunciation dictionary and a simple phoneme mapping.
Similarly the Festival front-end is used to generate labels for the
same sentence now transcribed completely in the Latin script.
Now the word count and word boundaries of the two full con-
text label streams are tracked and merged by retaining Indian
language labels from the Ossian frontend and the English labels
from the festival frontend. The combined model set is then used
to synthesize the merged label stream.

4. Results
The identifier for our system in the published results is F.

4.1. Hub task

We first discuss the results of our IH1 entries. Based on the
scores from all listener types, on no language for which results
are made available2 is there any system significantly more intel-
ligible than ours (published results, 1% significance level), and
in each language there is at least one system significantly worse.
This is not always the same system: it is variously C, B, H or I,
or some combination of those systems. The results plots are too
many to show here; we show only the plots of results for Telugu
in Figures 2 to 4.

We now consider mean opinion scores for naturalness from
all listeners on RD sentences; naturalness scores on SUS sen-
tences are not considered here. On two of the languages (Ra-
jasthani and Tamil), our system is in tied top place with system
G. On two languages (Assamese and Telugu), our system is out-
performed only by system G. Our system outperforms between
3 and 7 other systems in each language.

2All languages except Gujarati, for which results are not available at
time of writing
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Figure 4: Telugu similarity scores on hub task.

Figure 5: Overview of the SIMPLE4ALL spoke task system.

Turning to speaker similarity, we now consider mean opin-
ion scores from all listeners on RD sentences; naturalness scores
on SUS sentences are again not considered here. On two lan-
guages (Assamese and Rajasthani) there are no TTS systems
significantly better than ours. On the other three languages,
there is only one system significantly better than ours. There
are between 2 and 5 TTS systems significantly worse than ours
in any language.

4.2. Spoke task

Out of the six Indian languages, we tried to complete five lan-
guages where in the targe speaker was a male, as we had only
one Indian English male voice for the adaptation. Tamil with
a female voice was not attempted. Of the five languages at-
tempted, there were problems with the unsupervised speaker
adaptation of the Indian English models using Gujarati data. In
the case of Assamese, the Assamese models were deemed not
good enough due to the pop-noise in the original recordings,
which we did not attempt to fix. In the end, submissions for
three languages were made, namely, Hindi, Rajasthani and Tel-
ugu.

The SIMPLE4ALL system (F) performed on a par with the
top systems in terms of naturalness for Hindi and Rajasthani
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Figure 6: Rajasthani naturalness scores on spoke task.

and is second best for Telugu. In terms of speaker similarity,
our system (F) performs on a par with the top system in the
case of Rajasthani, second best in the case of Telugu, while it is
rated last in the case of Hindi. Additional recordings from more
Indian-accented English speakers would be required to produce
good quality dual-langauage synthesis systems for the rest of
the speakers. A plot of spoke task results for our bilingual Ra-
jasthani/English system are shown in Figures 6 and 7.

5. Conclusion
Our system performed well in all parts of the evaluation, sup-
porting the hypothesis that an unsupervised front-end approach
is competitive for languages with little infrastructure. At the
same time, our Hindi system was not worse than entries from
other groups, who we suspect had access to considerable lin-
guistic resources for this language. Our hub task system is as
intelligible as any other TTS system across all languages – in
no language does any TTS system perform significantly better
than ours. We suspect this reflects the impact of the naive alpha-
betisation used. On two languages in the speaker similarity sec-
tion of the hub task, no TTS system is significantly better than
ours. We consider this – and the respectable performance else-
where – to be a big success for a TTS system based on vocoding.
The current trend to shift from HMM to DNN-based synthesis
might yield ongoing performance improvement; in our case, we
consider the improvement in speaker similarity is likely due to
the DNN-predicted pulses. We consider our success to indicate
that statistical parametric synthesis is a good paradigm to follow
where only small to medium sized corpora are available.
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