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Abstract
This paper describes a hidden Markov model (HMM)-based
text-to-speech (TTS) system developed at the Nagoya Insti-
tute of Technology (NITECH) for the Blizzard Challenge 2015.
The tasks of the Blizzard Challenge 2015 are speech synthe-
sis for six Indian languages and multilingual involving one In-
dian language and English. In this challenge, only Indian lan-
guage speech data and text are provided as training data. There-
fore, pronunciation information, such as phoneset, phoneme se-
quences, and lexicon, for each language is needed to construct
TTS systems. Standard methods for constructing a TTS system
of a new language take a huge cost because it requires a spe-
cial knowledge of the target language. In this paper, we focus
on automatic construction of a TTS system without the special
knowledge of the target language. The results of a large-scale
subjectivity evaluation are discussed.
Index Terms: text-to-speech system, unknown-pronunciation
language, multilingual speech synthesis, hidden Markov model,
Blizzard Challenge

1. Introduction
In recent years, a number of studies for text-to-speech (TTS)
systems have been conducted. Consequently, quality of syn-
thetic speech has been improved and TTS systems have been
widely used in various applications. For expanded use of appli-
cations, the demand for TTS systems of various languages has
increased in diverse fields. It is considered that thousands of
languages exist in the world [1]. However, in traditional meth-
ods, it is difficult to build TTS systems of any language. There-
fore, one goal of the speech synthesis research is to establish
a framework that can be applied to build TTS systems of any
language.

Typical TTS systems have two main components: text anal-
ysis and speech waveform generation parts. In the text analy-
sis part, pronunciation of an input text is estimated by using
a lexicon which contain pronunciation (phoneme) information.
In addition, some context information, e.g., part of speech and
accent, is obtained in this part. Since this part is highly de-
pendent on the target language, construction of it requires a
huge cost for someone not familiar with the target language.
In the speech waveform generation part, speech waveforms are
generated from the pronunciation estimated by the text analy-
sis part. Approaches based on unit-selection [2] and statisti-
cal parametric speech synthesis (SPSS), e.g., hidden Markov
model (HMM)- [3] and deep neural network (DNN)- [4] based
speech synthesis, have been proposed for the speech waveform
generation part. Since the HMM-based speech synthesis has
been actively researched in recent years, the synthetic speech

quality of this method improved greatly. Compared with other
synthesis methods, this method has several advantages. First,
under its statistical training framework, it can learn the statis-
tical properties of speakers, speaking styles [5], emotions [6],
etc. from a speech corpus. Second, many techniques developed
for HMM-based speech recognition can be applied to speech
synthesis [7, 8]. Third, the voice characteristics of synthe-
sized speech can be easily controlled by modifying the acoustic
statistics of HMMs [9, 10]. Fourth, supporting multiple lan-
guages can easily be accomplished because the only language-
dependent element is the set of contextual factors to be used.

The Blizzard Challenge was started in order to better un-
derstand and compare research techniques in building corpus-
based speech synthesizers with the same data in 2005 [11, 12].
This challenge so far has provided English, Mandarin, audio-
books, etc. as a database. The tasks of the Blizzard Chal-
lenge 2015 are speech synthesis for six Indian languages (Ben-
gali, Hindi, Malayalam, Marathi, Tamil, and Telugu) and mul-
tilingual involving one Indian language and English [13]. The
provided databases [14] consist of Indian language speech data
and text. That is, pronunciation information, such as phoneset,
phoneme sequences, and lexicon, for each language is needed
to construct TTS systems.

Typical HMM-based TTS systems require phoneme infor-
mation because acoustic features are generally modeled at the
phoneme-level. Under normal circumstances, to define a phone-
set fully requires a special knowledge of the target language.
Even if a phoneset can be defined, labeling of target speech data
demands a high cost. Therefore, obtaining some phoneme infor-
mation is difficult or impossible for someone not familiar with
the target language. To establish a low language-dependency
framework to construct TTS systems from a database that con-
sist of only speech data and text is important for the speech
synthesis research. In this paper, we focus on automatic con-
struction of a TTS system without a special knowledge of any
unknown-pronunciation languages. The problem in this situa-
tion is that a phoneset, label sequences corresponding to target
speech data, and a lexicon do not exist. To solve a phoneset and
label sequences problem, speech recognition is carried out by
using the speech recognizer of the other language, e.g., English.
Label sequences of target speech data can be obtained by using
speech recognition. Then, an HMM-based speech synthesizer
of the target language is trained by using pairs of speech data
and label sequences. To solve a lexicon problem, a joint multi-
gram grapheme-to-phoneme converter is trained by using pairs
of text and label sequences [15]. With these processes, it is pos-
sible to construct a TTS system without a special knowledge of
the target language.

The rest of this paper is organized as follows. In Section 2,



the tasks of the Blizzard Challenge 2015 are briefly explained.
Section 3 describes our TTS system. Subjective listening test
results are presented in Section 4. Concluding remarks and fu-
ture work are presented in the final section.

2. Blizzard Challenge 2015 tasks
The Blizzard Challenge 2015 is the construction of TTS sys-
tems for six Indian languages (Bengali, Hindi, Malayalam,
Marathi, Tamil, and Telugu) [13]. This challenge includes two
tasks: one for a Hub task and one for a Spoke task on Indian
language.

The Hub task is to build TTS systems in each Indian lan-
guage from the provided speech data and the corresponding text
in UTF-8 format. About four or two hours of speech data, sam-
pled at 16kHz, in each of the six Indian languages are provided
as training data.

The Spoke task is to build multilingual (polyglot) TTS sys-
tems, i.e., one Indian language and English. Training data for
this task is the same as for the Hub task, i.e., the training data
do not contain any English words at all. The example input text
to be synthesized for the Spoke task is as follows:

Example input text for the Spoke task (Hindi and English)

Stanford वै�ािनक� 	ारा िवकिसत नयी aluminium battery,
केवल एक minute म� cellphone को charge कर सकती ह.ै

3. System overview
3.1. Construction of HMM-based text-to-speech system

In this paper, we propose a TTS system building method using
a target language database which consists of speech data and
text corresponding to speech data. In typical HMM-based TTS
systems, acoustic features are modeled at the phoneme-level.
Thus, the following steps are needed in order to construct a TTS
system of a new language.

Step 1 Definition of a phoneset.

Step 2 Construction of a lexicon or grapheme-to-phoneme
converter for the text analysis part.

Step 3 Definition of contextual factors to be considered in
acoustic modeling.

Step 4 Preparation of label sequences corresponding to speech
data.

These steps take a huge cost for someone not familiar with
the target language because it requires a special knowledge of
the target language. Therefore, to establish a low language-
dependency framework of a TTS system construction from a
database consist of speech data and text is important for the
speech synthesis research. In this paper, we investigate a
framework to automatic construction of TTS systems for any
unknown-pronunciation languages.

3.2. Construction of HMM-based text-to-speech system in
unknown-pronunciation language

It is difficult to define phonesets for an unknown-pronunciation
language. Furthermore, it is hard to obtain a phoneme sequence
corresponding to the speech data. To solve these problems,
our system automatically obtain phoneme sequences by using
a speech recognizer for a different language, e.g., English, from
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Figure 1: Overview of the NITECH TTS system.

the target language. Thereby, the phoneset of the different lan-
guage speech recognizer is used as the phoneset of the target
language. Although the phoneset is different from the correct
phoneset of target language, similar phonemes are assigned to
speech data in this approach. Figure 1 shows an overview of
the NITECH TTS system. This system is constructed with
a speech recognizer (SR), word aligner (WA), grapheme-to-
phoneme converter (G2P), and speech synthesizer (SS). We call
the SR, WA, and G2P as front-end components and call the SS
as a back-end component. The details of each component are
described in the following sections.

3.2.1. Speech recognizer (SR)

In the case of HMM-based SS, phoneme sequences correspond-
ing to the speech data are necessary for acoustic modeling at the
phoneme-level. To obtain label sequences, speech recognition
is carried out by using a speaker-independent SR (SISR) of the
other language. For the target language recognition, the phone
network is designed so that it might be connected with every
phoneme (triphone recognizer). Because of this process, the
phoneset of SISR is used as the phoneset of the target language.

Since accuracy of phoneme sequences affect the latter com-
ponents, i.e., the WA, G2P, and SS, it is important to estimate
the high accuracy phoneme sequences. To estimate more ac-
curate phoneme sequences, a speaker-dependent SR (SDSR)
is constructed from initial phoneme sequences obtained by the
SISR. Furthermore, estimation of phoneme sequences and train-
ing of the SDSR are iterated in order to improve the accuracy of
phoneme sequences.

Modeling of phoneme durations is important for an SS.
Thus, it is expected that estimation of phoneme sequences
taking account of phoneme duration can obtain phoneme se-
quences suitable for the SS. However, a standard SR is difficult
to consider a phoneme duration. Therefore, in our system, a
phoneme sequence is selected using an alignment likelihood
of a hidden semi-Markov model (HSMM) that have explicit
duration distributions. Among the N -best hypotheses of the



speech recognition result, the phoneme sequence with the high-
est alignment likelihood is selected as the phoneme sequence
corresponding to the speech data.

3.2.2. Word aligner (WA)

Since many languages are written with space between words,
a word-level G2P is suitable for the text analysis part. Further-
more, word boundary (WB) information is useful for contextual
factors of an SS. However, a label sequence obtained by the
speech recognition does not include a WB. Therefore, a WA is
constructed for estimation of WB. In our system, the WA is con-
structed by using a joint multigram models [15]. The optimal
grapheme and phoneme pair ŵ is estimated as follows:

ŵ = arg max
w∈w∗

∏
w∈w

P (w). (1)

Where, w is a pair of a grapheme and a phoneme, w is a pair of
possibly different lengths, and w∗ denotes the set of all pair se-
quences. The parameters of the joint multigram models are esti-
mated by using the expectation-maximization (EM) algorithm.
The WA is estimated by providing a constraint condition such
that a pause of recognition results must be WB. Then, a word
alignment is obtained by applying the Viterbi algorithm.

3.2.3. Grapheme-to-phoneme converter (G2P)

To synthesize an arbitrary text, an input text needs to be con-
verted into a phoneme sequence. However, in the unknown-
pronunciation language, it is difficult to construct a lexicon for
converting the input text into phonemes. To overcome this prob-
lem, a G2P based on a joint multigram model [15] is introduced
instead of a lexicon. The joint multigram G2P is trained by us-
ing the Sequitur G2P [16].

Since training data of the G2P does not contain any pauses,
pauses are not contained in generated phoneme sequences by
the G2P. Therefore, a pause is inserted into a label sequence
when any of the following conditions exist: 1) a comma, colon,
and parenthesis are present; 2) before or after a word that is easy
to enter pause in a speech recognition result.

In the Blizzard Challenge 2015, the input text to be syn-
thesized includes Indian language and English. In our sys-
tem, since initial phoneme sequences are obtained from En-
glish SISR, the phoneset of English is used a phoneset of In-
dian language. Therefore, our system is able to synthesize In-
dian language and English speech by converting the text into the
phoneme sequence. The phoneme sequences of Indian language
text are generated from the G2P, and the phoneme sequences of
English text are generated from the Festival [17].

3.2.4. Speech synthesizer (SS)

In the case of HMM-based SS, a context-dependent models are
generally used to capture a variety of contextual factors. A full-
context label corresponding to the speech data in the target lan-
guage is created from a phoneme sequence with WB informa-
tion obtained by the SR and WA. The contexts of phoneme, syl-
lable, word, phrase, and utterance are used in full-context labels.
A syllable is defined as the C∗V , where C is a consonant, V
is a vowel, and C∗ indicates there may be none or more conso-
nant. The consonant or vowel of a phoneme is dependent on the
phoneset of the language used in SISR. The SS can be built in
the same procedure as the standard procedure by using speech
data and corresponding full-context labels. Figure 2 overviews
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Figure 2: Overview of HMM-based SS.

an HMM-based speech synthesis system. It consists of training
and synthesis parts. We used the HTS [18] for this component.

The training part is similar to that used in speech recog-
nition. The main difference is that both spectrum, e.g., mel-
cepstral coefficients and their dynamic features, and excitation,
e.g., log F0 and its dynamic features, parameters are extracted
from a speech database and modeled by using HMMs [19]. In
our system, the HSMM-based speech synthesis framework [7]
is used. It makes possible to estimate state output and duration
probability distributions simultaneously. Although spectral pa-
rameters can be modeled by using a continuous HMM, F0 can-
not be modeled by using a continuous or discrete HMM because
the F0 observation sequence is composed of a one-dimensional
continuous value and discrete symbol that represents unvoiced.
To model such an observation sequence, multi-space probabil-
ity distributions (MSDs) [20] are used for state-output distribu-
tions.

The synthesis part does the inverse operation of speech
recognition. First, an arbitrarily given input text to be synthe-
sized is converted to a context-dependent label sequence by us-
ing G2P, and then, a sentence HMM is constructed by concate-
nating the context-dependent HMMs in accordance with the la-
bel sequence. Second, state durations of the sentence HMM
are determined on the basis of the state-duration distributions.
Third, the speech parameter generation algorithm generates se-
quences of spectral and excitation parameters that maximize
their output probabilities under the constraints between static
and dynamic features [21]. Finally, a speech waveform is syn-
thesized directly from the generated spectral and excitation pa-
rameters by using a speech synthesis filter.

As a high-quality speech vocoding method, we use
STRAIGHT, which is a vocoder type algorithm [22]. It consists
of three main components: F0 extraction, spectral and aperi-
odic analysis, and speech synthesis. Using the extracted F0, we
use the STRAIGHT method to perform pitch-adaptive spectral
analysis combined with a surface reconstruction method in the
time-frequency domain to remove signal periodicity.

We applied a parameter generation algorithm considering
the global variance (GV) of the generated parameters [23] for
both the spectral and F0 parameter generation processes. To



improve the estimation accuracy of GV models, we use the GV
features calculated from only the speech region, excluding the
silence and pause regions, and estimate the context-dependent
GV models instead of a single global GV model. The context-
dependent GV models are tied by using a decision-tree based
context clustering method in a similar way to acoustic model
parameter tying.

4. Blizzard Challenge 2015 evaluation
4.1. Experimental conditions of speech recognizer

The target language was six Indian languages (Bengali, Hindi,
Malayalam, Marathi, Tamil, and Telugu). Indian language
databases were provided from the Blizzard Challenge 2015 or-
ganization [14]. To train the English SISR, we used the CMU
pronunciation dictionary and the WSJ0, WSJ1, and TIMIT
databases. Speech signals were sampled at a rate of 16 kHz
and windowed by a 25-ms hamming window with a 10-ms
shift. The acoustic feature vector consists of 39 components
comprised of 12-dimension mel-frequency cepstral coefficients
(MFCCs) including the 0th order coefficient with the first and
second order derivatives. A 3-state left-to-right HMM without
skip transitions was used. The trained GMMs had 32 mix-
tures for silence and 16 mixtures for the others. We used the
HTK [24] for this component. This recipe is the same as that of
the HTK Wall Street Journal Training Recipe [25]. A phoneme
sequence was selected using an alignment likelihood of the
HSMM from 50-best hypothesis of speech recognition results.
Table 1 indicates the insertion penalty and the number of iter-
ations of estimation of phoneme sequences and training of the
SDSR.

4.2. Experimental conditions of speech synthesizer

Speech signals were sampled at a 16 kHz rate and windowed by
using an F0-adaptive Gaussian window with a 5-ms shift. Fea-
ture vectors were comprised of 183-dimensions: 39-dimension
STRAIGHT [22] mel-cepstral coefficients include the 0th co-
efficient, log F0, 19-dimension mel-cepstral analysis aperiodic-
ity measures, and their dynamic and acceleration coefficients.
We used 5-state left-to-right context-dependent multi-stream
MSD-HSMMs [7, 20] without skip transitions as acoustic mod-
els. Each state output probability distribution was composed of
spectrum, F0, and aperiodicity streams. The spectrum and ape-
riodicity streams were modeled by using single multi-variate
Gaussian distributions with diagonal covariance matrices. The
F0 stream was modeled by using a multi-space probability dis-
tribution consisting of a Gaussian distribution for voiced frames
and a discrete distribution for unvoiced frames. State durations
were modeled by using a 1-dimensional Gaussian distribution.
Table 2 indicates the amount of training data.

4.3. Experimental conditions of listening test

Large-scale subjective experiments were conducted by the Bliz-
zard Challenge 2015 organization. Table 3 shows the num-
ber of paid listeners. To evaluate intelligibility, the subjects
were asked to transcribe semantically unpredictable sentences
by typing in the sentence they heard; the average word error rate
(WER) were calculated from these transcripts. Furthermore, to
evaluate the speaker similarity and naturalness, 5-point mean
opinion score (MOS) tests were conducted. The scale for the
similarity was 5 for “sounds like exactly the same person” and
1 for “sounds like a totally different person” compared with a

Table 1: Insertion penalty and number of iterations

Language Insertion penalty # of iterations
Bengali −20 3
Hindi −40 2

Malayalam −40 3
Marathi −40 3
Tamil −20 3
Telugu −10 2

Table 2: Amount of training data

Language # of sentences Time
Bengali 1284 1h, 58m, 27s
Hindi 1690 3h, 57m, 59s

Malayalam 1269 1h, 58m, 9s
Marathi 1178 2h, 6m, 7s
Tamil 1440 4h, 9m, 28s
Telugu 2461 4h, 11m, 34s

Table 3: Number of paid listeners

Language # of listeners
Bengali 48
Hindi 69

Malayalam 72
Marathi 69
Tamil 70
Telugu 70

few natural example sentences from the reference speaker. The
scale for the naturalness was 5 for “completely natural” and 1
for “completely unnatural”.

4.4. Experimental results

Table 4 indicates the score and standard deviation of evaluation
results. In this table, RD, SUS, and ML correspond as follows.

• RD: read text (Hub task)

• SUS: semantically unpredictable sentences (Hub task)

• ML: multilingual sentences, i.e., one Indian language
and English (Spoke task)

In addition, system A, B, and G correspond as follows.

• A: natural speech

• B: baseline system

• G: NITECH system

In our system, pronunciation errors can occur due to errors
in the front-end component. It is considered that pronunciation
errors lead the high WER and low MOS. It can actually be seen
in Table 4 that our system G achieved equivalent result com-
pared with the other systems in Hindi and Tamil. Especially in



Table 4: Evaluation results
WER (%) MOS of speaker similarity MOS of naturalness

Language System SUS RD SUS ML RD SUS ML
A 43 4.5 ± 0.68 4.7 ± 0.54 4.6 ± 0.67 4.7 ± 0.86 4.6 ± 0.84 4.7 ± 0.78
B 52 2.5 ± 1.19 3.7 ± 0.91 1.8 ± 1.12 2.2 ± 1.02 2.7 ± 1.26 1.8 ± 0.92
C 100 2.2 ± 1.02 2.2 ± 1.15 2.1 ± 0.87 2.9 ± 1.06 3.1 ± 1.10 2.6 ± 1.15
D 57 2.2 ± 0.90 3.0 ± 1.20 2.8 ± 0.99 3.0 ± 1.11 3.0 ± 1.04 2.6 ± 1.00

Bengali E 69 3.7 ± 1.22 3.3 ± 1.09 4.1 ± 0.95 3.4 ± 1.07 2.7 ± 0.94 3.8 ± 0.95
F 66 1.7 ± 0.78 2.6 ± 1.32 2.1 ± 1.03 2.0 ± 1.10 1.8 ± 0.88 1.6 ± 0.85
G 76 3.1 ± 1.21 3.1 ± 0.93 2.2 ± 1.21 2.5 ± 1.10 2.8 ± 1.00 2.2 ± 0.99
H 55 2.4 ± 1.05 2.5 ± 1.18 – 2.6 ± 1.11 2.6 ± 1.06 –
I 100 2.9 ± 1.08 2.3 ± 1.14 – 2.7 ± 1.08 2.1 ± 0.93 –
J 61 2.7 ± 1.07 2.8 ± 1.04 – 2.6 ± 1.08 2.5 ± 0.93 –
A 42 4.5 ± 0.82 4.4 ± 0.79 4.5 ± 0.72 4.7 ± 0.59 4.4 ± 0.82 4.7 ± 0.52
B 49 2.6 ± 1.11 3.5 ± 1.01 1.8 ± 1.15 3.2 ± 1.20 2.6 ± 1.08 1.8 ± 0.94
C 34 2.4 ± 1.27 2.0 ± 1.06 2.2 ± 1.04 3.5 ± 1.03 3.3 ± 1.10 3.2 ± 1.00
D 25 2.7 ± 1.19 2.2 ± 1.16 2.0 ± 1.12 2.8 ± 1.09 2.7 ± 1.08 2.3 ± 1.17

Hindi E 40 2.9 ± 1.17 2.8 ± 1.06 3.5 ± 1.07 2.6 ± 1.18 3.0 ± 1.17 3.2 ± 1.07
F 23 4.3 ± 0.97 3.9 ± 1.14 3.1 ± 1.20 3.9 ± 0.92 3.9 ± 0.92 2.9 ± 1.25
G 30 2.8 ± 1.06 2.9 ± 1.06 2.2 ± 1.14 2.3 ± 1.01 2.4 ± 1.01 2.0 ± 0.93
H 24 2.7 ± 1.33 2.6 ± 1.18 – 2.8 ± 1.11 3.0 ± 1.05 –
I 31 3.5 ± 1.11 3.3 ± 1.10 – 2.8 ± 1.02 3.2 ± 1.09 –
J 40 3.3 ± 1.17 2.2 ± 1.03 – 3.3 ± 0.97 3.1 ± 1.10 –
A 59 4.6 ± 0.85 4.2 ± 1.21 4.2 ± 1.2 4.3 ± 0.97 4.3 ± 1.09 4.4 ± 0.99
B 64 1.8 ± 1.04 2.1 ± 1.20 2.6 ± 1.2 1.6 ± 0.88 1.9 ± 1.06 1.9 ± 0.83
C 50 2.3 ± 1.30 2.1 ± 1.17 2.2 ± 1.3 2.6 ± 1.07 2.8 ± 1.00 2.4 ± 0.91
D 78 2.1 ± 1.06 2.2 ± 1.19 2.1 ± 1.2 2.3 ± 1.09 2.4 ± 0.97 2.2 ± 1.06

Malayalam E 47 2.9 ± 0.80 2.6 ± 0.78 3.2 ± 1.0 2.3 ± 1.11 2.7 ± 0.77 3.6 ± 0.98
F 74 2.3 ± 1.20 2.3 ± 1.22 2.6 ± 1.3 2.9 ± 1.10 2.5 ± 0.96 2.7 ± 0.95
G 98 2.3 ± 1.32 2.1 ± 1.32 2.0 ± 1.3 1.7 ± 0.90 2.0 ± 1.00 1.9 ± 1.05
H 46 2.0 ± 1.26 2.2 ± 1.27 – 2.1 ± 1.01 2.1 ± 1.12 –
I 73 3.0 ± 1.24 3.2 ± 1.36 – 2.7 ± 0.90 2.9 ± 0.87 –
J 52 2.0 ± 1.08 2.9 ± 1.21 – 2.9 ± 0.92 2.3 ± 0.98 –
A 35 4.4 ± 1.04 4.3 ± 1.00 4.3 ± 1.08 4.6 ± 0.80 4.5 ± 0.81 4.8 ± 0.64
B 35 2.3 ± 1.22 2.7 ± 1.13 2.2 ± 1.15 2.7 ± 1.12 2.5 ± 1.22 2.2 ± 1.00
C 26 2.3 ± 1.18 1.9 ± 0.99 1.6 ± 0.88 2.5 ± 1.05 2.7 ± 0.94 2.6 ± 0.97
D 30 3.0 ± 1.22 3.4 ± 1.04 3.1 ± 1.21 3.0 ± 1.04 2.9 ± 0.94 2.6 ± 0.97

Marathi E 52 2.9 ± 0.85 3.4 ± 1.21 2.7 ± 1.03 3.0 ± 0.77 3.3 ± 1.00 3.4 ± 1.03
F 41 3.0 ± 1.11 2.8 ± 1.09 2.7 ± 1.00 3.2 ± 1.07 3.2 ± 0.97 2.9 ± 0.95
G 69 2.5 ± 1.16 2.2 ± 1.13 2.1 ± 1.08 2.2 ± 0.95 2.2 ± 0.99 2.1 ± 0.95
H 35 2.1 ± 1.14 2.4 ± 1.19 – 2.9 ± 1.04 2.7 ± 1.03 –
J 21 2.8 ± 1.14 2.4 ± 0.92 – 3.3 ± 0.97 2.9 ± 1.00 –
A 29 4.6 ± 0.89 4.6 ± 0.71 4.2 ± 1.24 4.7 ± 0.73 4.6 ± 0.80 4.7 ± 0.75
B 57 1.8 ± 1.05 1.9 ± 1.02 2.2 ± 1.13 2.2 ± 1.11 2.2 ± 1.10 2.2 ± 1.03
C 49 2.2 ± 1.15 2.8 ± 1.23 2.8 ± 1.07 2.8 ± 0.99 3.3 ± 1.05 2.9 ± 1.08
D 49 1.9 ± 1.08 2.0 ± 1.06 1.7 ± 0.93 2.6 ± 1.11 2.6 ± 1.11 2.3 ± 1.08

Tamil E 69 2.7 ± 0.48 2.6 ± 1.28 3.3 ± 0.86 2.5 ± 0.60 3.0 ± 1.07 4.0 ± 0.91
F 67 2.7 ± 1.21 2.5 ± 1.10 2.6 ± 1.09 3.6 ± 1.06 3.2 ± 0.97 3.3 ± 0.94
G 47 2.3 ± 1.14 3.1 ± 1.25 2.4 ± 1.33 2.4 ± 1.00 2.3 ± 1.06 2.6 ± 1.02
H 57 2.6 ± 1.24 2.7 ± 1.18 – 3.0 ± 1.14 3.7 ± 0.87 –
I 50 3.6 ± 1.11 3.4 ± 1.19 – 3.2 ± 0.97 3.0 ± 1.22 –
J 60 2.6 ± 1.10 2.3 ± 1.21 – 2.7 ± 1.03 3.0 ± 0.89 –
A 82 4.5 ± 0.86 3.3 ± 1.41 3.8 ± 1.31 4.8 ± 0.59 4.5 ± 0.82 4.8 ± 0.64
B 70 2.1 ± 1.10 2.1 ± 1.02 2.1 ± 0.95 1.9 ± 0.98 1.8 ± 0.84 2.0 ± 0.96
C 46 1.3 ± 0.82 1.4 ± 0.60 1.5 ± 0.86 2.6 ± 1.22 2.5 ± 1.12 2.5 ± 1.06
D 60 2.0 ± 1.22 2.6 ± 1.06 2.3 ± 1.07 2.1 ± 0.96 2.5 ± 0.98 2.6 ± 0.96

Telugu E 54 2.9 ± 0.82 2.5 ± 0.81 2.5 ± 0.90 2.8 ± 0.85 2.7 ± 0.81 2.9 ± 0.85
F 59 2.5 ± 1.19 2.0 ± 1.01 2.2 ± 0.95 3.5 ± 0.95 2.5 ± 1.01 2.6 ± 0.98
G 75 3.1 ± 1.25 2.2 ± 1.08 1.4 ± 0.64 2.1 ± 0.97 2.1 ± 0.86 2.4 ± 0.96
H 46 2.4 ± 0.93 3.4 ± 1.11 – 3.0 ± 1.06 3.0 ± 1.02 –
I 62 4.2 ± 0.97 1.9 ± 1.04 – 2.9 ± 1.10 2.1 ± 0.86 –
J 57 2.7 ± 1.18 2.0 ± 1.03 – 3.5 ± 0.94 2.7 ± 0.98 –



Tamil, our system G shows the lowest WER (47%). By con-
trast, the WER of the other four languages (Bengali, Malay-
alam, Marathi, and Telugu) are not good. These results suggest
that, it is important to properly adjusts the front-end compo-
nent for each language. The WER (98%) in Malayalam is poor
results. Since there are many graphemes in the word in Malay-
alam, it seems that errors in the front-end component easily oc-
cur.

The speaker similarity score in our system G is neither
good nor bad compared with the other systems. Bengali ob-
tained the high speaker similarity score even though it is the
high WER (76%). Therefore, a high WER or pronunciation er-
rors scarcely affect the speaker similarity score.

In our system G, the naturalness score could not get good
results. Tamil obtained the low naturalness score even though it
is the lowest WER. Thus, even a little word pronunciation error
often affects the naturalness score.

5. Conclusions
We described a hidden Markov model (HMM)-based text-to-
speech (TTS) system developed at the Nagoya Institute of Tech-
nology (NITECH) for the Blizzard Challenge 2015. In this pa-
per, we focused on constructing a TTS system without a special
knowledge of a target language. Our approach enabled a target
language and multilingual TTS system construction. In large-
scale subjective experiments, our system was able to achieve a
high score if it is properly constructed the front-end component
for each language.

Investigation of a construction criteria, construction of the
multilingual speaker-independent speech recognizer (SISR) us-
ing the international phonetic alphabet (IPA), and investiga-
tion of phoneset determination approaches based on speech
data [26, 27] will be future works.
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