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Abstract

This paper decribes the NII speech synthesis entry for
Blizzard Challenge 2016, where the task was to build
a voice from audiobook data. The synthesis system is
built using the NII parametric speech synthesis frame-
work that utilizes Long Short Term Memory (LSTM) Re-
current Neural Network (RNN) for acoustic modeling.
For this entry, we first built a voice using a large data set,
and then used the audiobook data to adapt the acoustic
model to the target speaker. Additionally, the recent full-
band glottal vocoder GlottDNN was used in the system
with a DNN-based excitation model for generating glot-
tal waveforms. The vocoder estimates the vocal tract in
a band-wise manner using Quasi Closed Phase (QCP) in-
versefiltering at the low-band. At synthesis stage, the ex-
citation model is used to generate voiced excitation from
acoustic features, after which a vocal tract filter is applied
to generate synthetic speech.

The Blizzard Challenge listening test results show
that the proposed system achieves comparable quality
with the benchmark parametric synthesis systems.
Index Terms: Blizzard Challenge, parametric speech
synthesis, speaker adaptation, glottal vocoding, LSTM

1. Introduction
The TTS system for this entry is based on the NII statis-
tical parametric speech synthesis framework, where the
latest version of glottal vocoders [1] developed in Aalto
University, the full-band glottal vocoder GlottDNN[2], is
used instead of more conventional vocoding techniques.
Acoustic modelling in our synthesis framework is based
on Long Short-Term Memory (LSTM) Recurrent Neu-
ral networks (RNN), while HTS [3] is used for duration
modeling. Additionally, the system uses a feedforward
DNN-based glottal excitation model.

This year’s task in Blizzard Challenge was to build
a voice based on audiobook data read by a British En-
glish female speaker. While the data set is fairly large,
the acoustic model typically needs even more data to

benefit from the RNN architecture. For this reason we
chose an adaptation approach, where the acoustic model
is first trained on a large data set and then tuned with
the target speaker data. Another issue was posed by
the parametrization of the data, due to some reverbera-
tion and background noise being present in the record-
ings. After initial experiments with STRAIGHT [4] and
WORLD [5] vocoders, we decided to use the current ver-
sion of the GlottDNN vocoder.

Previously, female voices have been problematic for
the glottal vocoding [6, 7], in contrast to the good re-
sults with male voices reported in [1, 2] in comparison
with the STRAIGHT vocoder. However, recent improve-
ments with a high-pitched voice in [8] encouraged us to
use the new full-band glottal vocoder version to this voice
building task. Since the vocoding method in this work is
fairly novel, and no audiobook specific techniques were
developed yet for the synthesis system, this paper focuses
on giving detailed descriptions on the used vocoding and
acoustic modeling techniques.

This paper is structured as follows: section 2 de-
scribes the data sets and pre-processing steps used for
building the voice, while section 3 details the speech
parametrisation and synthesis techniques, along with the
acoustic and excitation models used. The results from
the Blizzard Challenge listening tests will be discussed in
section 4, with concluding remarks in section 5.

2. Data
2.1. Overview of the speech corpora

The data corpus released for the Blizzard Challenge this
year consists of English audiobooks, all read by the same
female speaker with a British accent. We utlize all the
released data for system construction, including the pi-
lot data released last year. In total, the uilized corpus
contains 5729 utterances with the total duration of 300
minutes.

Because this audiobook corpus may not be sufficient
to train the acoustic model based on deep neural network,



we also utilize the Nancy corpus from Blizzard Challenge
2011 [9] to pre-train the neural network. This corpus
contains 12092 utterances with a total duration of 963
minutes. Although this speaker has an American accent,
the data set benefits from being specifically designed for
speech synthesis and from being of high recording qual-
ity.

2.2. Speech data pre-processing

While the quality of recordings of the Nancy corpus is
well controlled, the quality of the audiobook may not
be ideal for parametric speech synthesis. Thus, pre-
processing is conducted on the audiobook data as fol-
lows:

1. De-reverberation: the deverberator of Postfish [10]
is utilized to take the unwanted room echo out of
the speech recordings;

2. Noise reduction: the noise reduction function of
Audacity [11] is used to attenuate the constant
background noise in recordings. This function is in
essence a multi-band digital noise gate, automati-
cally shaped by the property noise extracted from a
small segment of the recording;

3. Energy level normalization: the root mean square
(RMS) energy level of all the recordings are nor-
malized after voice activity detection and RMS
level calculation.

2.3. Text data pre-processing

The text data was manually checked. First, because the
text and audio segmentation was not always consistent,
the text was manually checked so that the text matched
the content of the speech. Second, non-speech content
in the speech waveform was annotated in the text. The
re-annotated text data were also shared with the Blizzard
Challenge participants.

3. Speech synthesis system
An overview of the synthesis system back-end is shown
in Figure 1. This section presents the procedure for fea-
ture extraction, acoustic and excitation model training,
and speech waveform synthesis. The acoustic model uses
LSTM RNN, while the glottal excitation model is a feed-
forward DNN.

3.1. Feature extraction

3.1.1. Acoustic features

For other acoustic feature extraction and synthesis-time
waveform generation we use the newly introduced full-
band glottal vocoder, GlottDNN [2]. The vocoder ex-
tends the Quasi Closed Phase (QCP) [12] inverse-filtering
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Figure 1: Synthesis system block diagram. At parame-
triation, the signal is split to high and low frequency
bands, allowing different linear-predictive techniques for
the bands. Glottal flow obtained from inverse-filtering is
processed pitch-synchronously using the glottal closure
instants (GCI), and a feed-forward (FF) DNN is trained
to predict the glottal waveforms. The model predicting
acoustic features from text is based on LSTM RNN.

analysis, and the DNN-based glottal excitation predic-
tion presented in [8] to the 48 kHz sampling rate. Fig-
ure 2 shows the analysis program flow implemented in
the GlottDNN vocoder, as explained in detail in [2]. The
main vocoder property, regarding full-band spectral anal-
ysis, is the splitting of the speech signal into two fre-
quency bands with Quadrature Mirror Filtering (QMF)
[13]. With QMF, the signal is split into two frequency
bands with mirrored frequency response filters and down-
sampled on both bands separately, resulting in half rate
signals representing high and low frequency bands. This
allows using the QCP analysis in the low-band, where
the periodicity caused by the glottal excitation is more
prominent, while using conventional linear prediction in
the more aperiodic high-band. As a result, more param-
eters can be allocated to the perceptually more important
lower frequencies. For modelling, the Line Spectral Fre-
quency (LSF) representation is used for both vocal tract
features.

Another novelty in the vocoder is in the modeling of
the aperiodic component of the excitation signal. First, a
glottal source estimate is obtained by inverse-filtering the
speech signal with the combined vocal tract filter formed



from the band-wise filters. Second, the glottal source is
median filtered to obtain a noise-like residual that closely
resembles the prediction residual of the DNN-based ex-
citation model [2], and finally, the spectral shape of this
noise signal is parametrized with line spectral frequency
(LSF). The acoustic features and their dimensions are
summarized in Table 1.

Due to the high expressiveness of the audiobook data,
voting from several fundamental frequency (f0) estima-
tors was used for increased robustness. The extracted f0
trajectory is based on the merged results of five f0 ex-
tractors, comprising the glottal autocorrelation method
[1], SWIPE [14], RAPT [15], SAC [16], and TEMPO
[17]. Given the f0 candidates of each frame, the median
is selected as the f0 observation. For the DNN acoustic
model, a binary voiced/unvoiced decision (VUV) is sepa-
rated from the f0, and the f0 trajectory is linearly interpo-
lated to have a continuous value also at unvoiced regions.
The median f0 trajectory was also used in the vocoding.
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Figure 2: Vocoder analysis module block diagram [2].
Vocal tract (VT) filter analysis is performed in two fre-
quency bands, where QCP is used on the low-band and
conventional linear prediction (LP) is used on the high-
band.

3.1.2. Text features

The system specifically uses two kinds of text features:
first, the full-context phonetic labels for the HMM-based
duration model, and second, the frame-rate input to the
neural network acoustic model. The utilized text fea-

Table 1: Acoustic features and their dimensions (includ-
ing their ∆ and ∆∆ values) used in the system. The first
five acoustic features are utilized as the input to predict
the glottal waveform.

Feature dim. ∆ dim.
Fundamental frequency (log f0) 1 3
Energy (log) 1 3
Low-band vocal tract (LSF) 42 126
High-band vocal tract (LSF) 18 54
Glottal source spectral tilt (LSF) 10 30
Voice-unvoiced decision (VUV) 1 1
Noise shape (LSF) 24 72
Noise energy (log) 1 3

tures are similar to those in the standard HTS system
[3]. Because the neural network acoustic models are
pre-trained on the Nancy data [9], the General American
(GAM) accent of Combilex lexicon [18] was chosen as
the phoneme set. For both the training and test data, the
letter-to-sound conversion, part-of-speech tagging, sylla-
ble accent inferring, and Tone and Break Index (ToBI) in-
tonational boundary tone prediction are all conducted by
Flite [19]. The text features as input to the neural network
also include the position of current frame in the phoneme
and utterance. In this entry, passage or paragraph feature
is not taken into consideration.

3.2. Acoustic model training

The overview of the acoustic and excitation models in the
synthesis system is shown in Figure 1. Left side of the fig-
ure depicts the model used to generate acoustic features
from text-derived input features, and the right side shows
the glottal excitation model used to generate glottal wave-
forms from acoustic features.

Differing from the glottal vocoding framework in [2],
where one neural network is utilized for predicting the
glottal waveform and another network for predicting all
the acoustic features, the implemented framework in our
system utilized an additional network to model the f0
trajectory separately. Thus, there are in total three neu-
ral networks. This is motivated by our recent finding
that a neural network may devote most of its network
capacity to model the spectral features while assigning
less priority to the perceptually important f0 trajectory
[20]. Note that instead of directly using the log f0, the
f0 trajectory is converted to mel-scale with the relation
m = 1127 ∗ log(1 + f0/700) where f0 is the fundamen-
tal frequency in Hz [21].

The neural networks for predicting f0 and other
acoustic features are implemented based on the RNN
with bi-directional LSTM units. For the f0 trajectory
prediction, the neural network is constructed with two
feedforward layers near the input side, followed by two



LSTM layers. The layer size of the feedforward layers is
set to 1024, while the size of the LSTM layers is 512.

The training stage of the acoustic model consists of
two steps. First, the network is randomly initialized and
trained given the data from the Nancy corpus. 500 sen-
tences from this corpus are utilized as the validation set
and the rest of the data are used for training. Stochastic
gradient descent with early stopping is adopted. Given
the network trained on the Nancy data, the second step is
to fine-tune the network using the audiobook data of the
current task. The training process for the second step is
similar to the first step, except the size of the validation
set is 200.

The duration model at the phoneme level, which is
not shown in Figure 1, uses a fairly standard HMM-
based parametric HTS framework. The decision-tree-
based model clustering process results in 2087 clustered
models out of the 162781 full-context models.

3.2.1. Excitation model

The synthesis system utilizes a DNN-based excitation
model that predicts glottal excitation waveforms from the
features generated by the acoustic model. This concept
was first introduced in [22], while this paper follows the
waveform processing method presented in [8]. For train-
ing the model, glottal pulses are extracted from the signal
estimated by inverse-filtering, as illustrated in Figure 3.
First, glottal closure instants (GCI), defined as the peri-
odic minima in the glottal flow derivative waveform, are
detected. Using the GCI, two pitch-period glottal pulses
are extracted, cosine windowed, and zero padded to a de-
sired fixed length. In this case, pulse length of 1600 was
chosen, corresponding to a minimum f0 of 60 Hz.

The network for modelling the glottal waveform is
implemented with a fully connected feedforward neural
network. The input features include the first five kinds of
acoustic features listed in Table 1, i.e. the noise features
and the binary VUV decision are excluded. The output
is the feature vector corresponding to the 1600 sampling
points of the glottal waveform. This network consists of
4 hidden layers (with sizes 250, 100, 250 and 1400), and
each layer utilizes the sigmoid activation function. The
excitation model was trained using data only from the tar-
get speaker.

3.3. Speech synthesis

At the synthesis front end, the input text is first split
into sentence-length segments, as the current text-to-
phonetic-labels system only handles context up to the
sentence level. The paragraph level text segments re-
quired for testing are simply concatenated from the in-
dividual sentences after synthesis. For the sentence-level
text inputs, Flite is used to create phonetic labels from
the input. HTS-based duration model trained on the tar-

Figure 3: Glottal exitation pulses are formatted for DNN
by taking a two pitch-period segment delimited by GCI,
cosine windowing the pulse, and zero-padding to a fixed
length.

get speaker is used with the Combilex lexicon to create
the frame-rate text features for the neural network inputs.

At the synthesis back-end, the text feature vectors are
used to generate the dynamic acoustic features listed in
Table 1. The Maximum Likelihood Parameter Genera-
tion (MLPG) algorithm is utilized to create smooth fea-
ture trajectories, and the resulting features are used for
both the input of the excitation model and final waveform
generation with the vocoder. An overview of the syn-
thesis system back-end is shown in Figure 1, while the
vocoder synthesis procedure is detailed in Figure 4.

The waveform synthesis process is done similarly to
[2]: first, the voicing decision is determined from the f0,
and in the voiced case the acoustic features are fed into
the excitation DNN to create glottal excitation pulses.
These pulses are first truncated to match the generated
f0 and cosine windowed, summing up to a Hann win-
dow, which is required for the overlap-add procedure.
The pulses are then modified for aperiodicity by adding
a noise component based on the noise shape LSFs, af-
ter which spectral matching is applied to compensate any
difference between predicted spectral tilt and generated
pulse spectrum. As a final modification, the pulses are
scaled by energy. The modified pulses are then assembled
into a voiced excitation signal with the pitch-synchronous
overlap-add method [23], using synthesis pitch marks de-
termined by the f0. Unvoiced excitation is simply created
by scaling white noise to the desired energy level. Finally,
the vocal tract filter is merged from the generated high-
band and low-band LSFs and used to filter the excitation,
resulting in synthetic speech.

4. Results and analysis
The synthesis system was evaluated as a part of the Bliz-
zard Challenge listening tests, where the participating en-
tries were evaluated by speech experts and paid listeners
in controlled listening conditions, and online volunteers
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Figure 4: Vocoder synthesis module block diagram [2].

in varying conditions. Here we focus on pooled results
from all listeners to get a general impression of the re-
sults.

Figure 5 shows the naturalness ratings presented as
box plots, where the central solid bar marks the median,
the shaded box represents the quartiles, and the extended
dashed lines show 1.5 times the quartile range. The most
relevant comparisons can be made with the other known
parametric synthesis systems, namely system C, which is
the HTS benchmark system, and system D, which a DNN
benchmark build with the new toolkit by CSTR (Univer-
sity of Edinburgh). The results show that our proposed
system K outperforms the HTS benchmark and ranks
similarly with the DNN benchmark. Wilcoxon signed
rank tests further indicate that the difference between the
proposed system and HTS benchmark is statistically sig-
nificant, whereas the difference to the DNN benchmark
is not significant.

Speaker similarity scores are presented in Figure 6
with similar box plots. The results show that the pro-
posed system has comparable level of speaker similar-
ity to the HTS benchmark, while having lower similarity
than the DNN benchmark. This is supported by the sig-
nificance tests, which indicate no significant difference
between the proposed system and HTS benchmark. Two
possible reasons may have lead to the relatively low sim-
ilarity score. First, the acoustic model was pre-trained
using the Nancy data; second, the GAM American ac-
cent phoneme set was used for the target speaker, whose
accent is different.

5. Conclusion
Although parametric synthesis is generally not yet as
good as unit-selection synthesis, a positive finding from
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Figure 5: Naturalness ratings. System K is the proposed
system, C is the HTS benchmark, and D is the DNN
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the glottal vocodings perspective in the present study was
that we achieved a similar performance to known bench-
mark parametric systems. It is worth emphasizing that
this happened even though the synthesis was based on a
female voice, which is known to be challenging speech
data for glottal inverse-filtering analysis [6, 7]. Build-
ing this system also furthered the development of the new
GlottDNN vocoder and DNN-based voice adaptation.

We feel that the audiobook data set was challeng-
ing for parametric synthesis, partially due to the ex-
pressiveness inherent to audiobooks, but also because
of the signal level non-idealities affecting vocoding. In
the future, more attention should be given to data pre-
processing, namely experimenting more with state-of-
the-art de-reverberation and noise suppression methods,
and applying a more strict speech/non-speech classifica-
tion, as the audiobook data also contained non-speech
signals such as ambient effects.
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