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Abstract
This paper describes a text-to-speech (TTS) system developed
at the Nagoya Institute of Technology (NITech) for the Bliz-
zard Challenge 2017. In the challenge, about seven hours of
highly expressive speech data from English children’s audio-
books were provided as training data. For this challenge, we
redesigned linguistic features for statistical parametric speech
synthesis based on audiobooks. Furthermore, we introduced the
parameter trajectory generation process considering the global
variance into the training of mixture density network based
acoustic models. Large-scale subjective evaluation results show
that the NITech TTS system achieved naturally sounding and
intelligible synthesized speech.
Index Terms: text-to-speech system, statistical parametric
speech synthesis, deep neural network, Blizzard Challenge, au-
diobook

1. Introduction
A number of studies on text-to-speech (TTS) systems have been
conducted. Consequently, the quality of synthetic speech has
improved, and such systems are now used in various applica-
tions, such as for in-car navigation, smartphones, and spoken
dialogue systems. Accordingly, the demand for TTS systems
offering high-quality synthetic speech, various speaking styles,
and various languages is increasing.

Although many TTS systems have been proposed, compar-
isons of such systems are difficult when the corpus, task, and
listening test are different. The Blizzard Challenge was started
in order to better understand and compare research techniques
in constructing corpus-based speech synthesizers with the same
data in 2005 [1]. This challenge has so far provided English,
Mandarin, some Indian languages, English audiobooks, etc. as
training data. The series of Blizzard Challenges has helped us
measure progress in TTS technology [2].

As computer processing power increased, approaches based
on big data have been successful in various research fields. In
corpus-based speech synthesis, a quality of synthesized speech
was improved by using a large amount of training data. There-
fore, a TTS system based on big data is important in speech
synthesis research. Speech data recorded with less noise and
under the same recording conditions are suitable for training
TTS systems. A large amount of training data is also necessary
to synthesize various speaking styles. For this reason, record-
ing a large amount of speech data for a TTS system requires
a huge cost. Therefore, TTS system construction method based
on audiobooks has received considerable attention. Audiobooks
can be relatively easily collected as a large amount of speech
data and text pairs. In the Blizzard Challenge 2013, around
300 hours of audiobooks were provided as training data [3].
In the Blizzard Challenge 2016, about five hours of highly ex-
pressive speech data from professionally produced English chil-
dren’s audiobooks were provided [4]. In the Blizzard Challenge

2017, about seven hours of speech data from children’s audio-
books, which includes the five hours released in the Blizzard
Challenge 2016, were provided as training data [5]. All 56
books were recorded by one native British English female pro-
fessional speaker. Texts corresponding to speech data were also
provided. The task was to construct a speech from this data that
is suitable for reading audiobooks to children.

The Nagoya Institute of Technology (NITech) have been
submitting statistical parametric speech synthesis (SPSS) sys-
tems to the Blizzard Challenge since 2005. Typical SPSS sys-
tems have three main components: linguistic features estima-
tion, acoustic features estimation, and speech waveform gen-
eration. In the linguistic features estimation component, lin-
guistic features, e.g., phonemes, syllables, accents, and parts-
of-speech, of an input text is estimated. In the acoustic features
estimation component, acoustic features which express charac-
teristics of a speech waveform is estimated with the linguis-
tic features. In the speech waveform generation component, a
speech waveform is generated from the acoustic features.

We focused on three approaches for last year’s chal-
lenge [6]: 1) automatic construction of a training corpus for
SPSS systems from audiobooks; 2) design of linguistic fea-
tures for SPSS based on audiobooks; and 3) deep neural net-
work acoustic models incorporating trajectory training. For this
year’s challenge, we redesigned linguistic features for SPSS
based on audiobooks. Features obtained from dependency pars-
ing [7], types of sentences [8], and word and phrase codes were
used as additional linguistic features from the last year’s sys-
tem. Moreover, we introduce the parameter trajectory genera-
tion process considering the global variance into the training [9]
of mixture density network based acoustic models [10, 11].

The rest of this paper is organized as follows. Section 2
describes the NITech TTS system for the Blizzard Challenge
2017. Subjective listening test results are given in Section 3 and
concluding remarks and an outline for future work are presented
in the final section.

2. NITech TTS system
The provided audiobooks contained mismatches between
speech data and text. These mismatches were caused by the
misreading of a text or words that do not exist in the text,
i.e., description of a book or onomatopoeia. This will neg-
atively affect training of statistical parametric speech synthe-
sis (SPSS). To overcome this problem in last year’s challenge,
we investigated the automatic construction of a training corpus
from audiobooks using a speech recognizer. Figure 1 shows an
overview of the automatic training corpus construction method.
The details were described in [6].

Figure 2 gives an overview of the Nagoya Institute of Tech-
nology (NITech) text-to-speech (TTS) system for the Blizzard
Challenge 2017. In the training part, linguistic and acoustic fea-
tures are first extracted from text analysis and vocoder encod-
ing, respectively. Second, hidden Markov model (HMM)-based
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Figure 2: Overview of the NITech TTS system

speech synthesizer [12] is constructed to estimate phoneme-
level alignments. Finally, deep neural network (DNN)-based
speech synthesizer is constructed by using frame-by-frame lin-
guistic and acoustic features. In the synthesis part, acoustic
features are estimated from linguistic features using the HMM-
based duration and DNN-based spectral and excitation models.
A synthesized speech is then generated from vocoder decod-
ing. The details of linguistic features for audiobooks and DNN-
based SPSS are described in the following sections.

2.1. Design of linguistic features for SPSS based on audio-
books

Acoustic models are trained to estimate acoustic features from
linguistic features. It is necessary to use appropriate linguistic
features for the training corpus. However, conventional linguis-
tic features are not designed assuming training corpus of au-
diobooks. Therefore, we redesign linguistic features for SPSS
based on audiobooks. Table 1 lists the linguistic features for the
NITech TTS system.

Information up to sentence-level has been used as conven-
tional linguistic features. Since audiobooks are semantically re-
lated between sentences, linguistic features up to sentence-level
are insufficient. We introduce page-level linguistic features
because a scene changes by a page in children’s audiobooks.
Moreover, since sentence structures are related to prosody, lin-
guistic features which capture sentence structures are useful
for acoustic model training. However, conventional linguis-
tic features are difficult to express complex sentence structures.

To consider sentence structures, linguistic features of sentence-
level syntactic and dependency parsing are performed. The re-
sults of parsing are represented by tree structures, which are
called syntactic tree and dependency tree, respectively. Infor-
mation obtained from the trees is used as linguistic features.

Children’s audiobooks include various speaking styles. Es-
pecially, the speech data in the conversational part and exclam-
atory sentences of audiobooks are read emphatically, emotion-
ally, and so on. These speaking styles in speech data should be
distinguished by linguistic features. For this reason, linguistic
features based on double quotes and types of sentences are used
to express the reading styles of speech data.

The training corpus contains various speaking variations for
each phrase. In order to train high-quality acoustic model, it
is necessary to distinguish speaking variations. We introduce
a phrase code into the linguistic features. The phrase code is
a unique value assigned to each phrase in the training corpus.
The phrase code is able to distinguish speaking variations be-
tween phrases in model training. In the synthesis part, a speak-
ing style can be represented by using an appropriate phrase
code. However, it is costly to select a phrase code for each
test phrase. Therefore, we investigate a framework to automat-
ically select an appropriate phrase code of a test phrase from
phrase codes in the training corpus. The doc2vec [13] which
is a technique of document vectorization proposed in the field
of natural language processing is used. It becomes possible to
measure phrase similarity by vectorizing phrases. The phrase
code of the highest similarity phrase in the training corpus is
used the phrase code of the test phrase. For example, when a
test phrase is an angry phrase, the degree of similarity between
an angry phrase in the training corpus and the test phrase is high.
If the phrase in the training corpus with the highest similarity is
recorded with an angry style, the test phrase can be synthesized
with the angry style. In this way, a speaking style can be se-
lected automatically from the text of the test phrase. Like the
phrase code, a word code is also introduced as linguistic fea-
tures. The word2vec [14] is used to measure word similarity of
a test word and training corpus words.

2.2. DNN-based SPSS

In SPSS using DNN-based acoustic models [15], a single DNN
is trained to represent a mapping function from linguistic fea-
tures to acoustic features. In the synthesis part, the linguistic
features extracted from given text to be synthesized are mapped
to acoustic features by using the trained DNN using forward-
propagation. To synthesize high-quality speech, we used a mix-
ture density network (MDN) as an acoustic model [10, 11] and
applied trajectory training considering global variance (GV) [9].

2.2.1. MDN-based SPSS

A speech parameter vector ot consists of a D-dimensional
static-feature vector ct = [ct(1), . . . , ct(D)]> and both of its
first- and second-order dynamic feature vectors, ∆(1)ct and
∆(2)ct.

ot = [c>t ,∆
(1)c>t ,∆

(2)c>t ]> (1)
The sequences of speech parameter vectors o and static-feature
vectors c, which represent a page in our system, can be written
in vector forms as follows:

o = [o>1 , . . . ,o
>
t , . . . ,o

>
T ]> (2)

c = [c>1 , . . . , c
>
t , . . . , c

>
T ]> (3)



Table 1: Linguistic features for SPSS. The bold font means additional linguistic features to the HTS-2.3.1 English demo script. The
“parent” represents a node of syntactic tree and the “father” and “children” represent a node of dependency tree.

Level Details of linguistic features
Phoneme The {phoneme before the previous / previous / current / next / phoneme after the next} phoneme identity. {Forward /

backward} position of the current phoneme identity in the current syllable. Whether the {previous / current / next}
phoneme identity is enclosed by double quotes.

Syllable Whether the {previous / current / next} syllable {stressed / accented}. The number of phonemes in the {previous
/ current / next} syllable. The number of {stressed / accented} syllables {before / after} the current syllable in the
current phrase. The number of syllables from the previous {stressed / accented} syllable to the current syllable. The
number of syllables from the current syllable to the next {stressed / accented} syllable. {Forward / backward} position
of the current syllable in the current {word / phrase}. Phoneme identity of the vowel of the current syllable. Whether
the {previous / current / next} syllable is enclosed by double quotes.

Word Guess part-of-speech of the {previous / current / next} word. The number of syllables in the {previous / current / next}
word. The number of content words {before / after} the current word in the current phrase. The number of words
from the {previous content word to the current word / current word to the next context word}. {Forward / backward}
position of the current word in the current phrase. Whether the {previous / current / next} word is enclosed by
double quotes. Guess part-of-speech of the parent of the current word. The number of {phonemes / syllables
/ words} in the parent of the current word. {Forward / backward} position of the current word in the parent
of the current word. Distance on the syntactic tree between the current word and the {previous word / next
word / root of the syntactic tree / previous content word / next content word}. The current {word to the father
/ father word to the grandfather / grandfather word to the grandgrandfather } word relation. The number of
children relations. Distance on the dependency tree between the current word and the {previous / next / root}
word. Distance on the text between the current word to the {father / grandfather / grandgrandfather} word.
Word code of the current word.

Phrase The number of {syllables / words} in the {previous / current / next} phrase. {Forward / backward} position of the
current phrase in the current sentence. TOBI endtone of the current phrase. Whether the {previous / current / next}
phrase is enclosed by double quotes. Phrase code of the current phrase.

Sentence The number of {syllables / words / phrases} in the current sentence. {Forward / backward} position of the current
sentence in the current page. Type of the current sentence.

Page The number of {phrases / sentences} in the current page. The rate of {words / phrases} enclosed by double
quotes in the current page.

where T is the number of frames included on a page. The rela-
tion between o and c can be represented as o = Wc, whereW
is a window matrix extending c to o. The optimal static-feature
vector sequence is obtained by

ĉ = arg max
c
P (o |λ) = arg max

c
N (Wc |µ,Σ) (4)

where λ is a parameter set and N (· |µ,Σ) denotes the Gaus-
sian distribution with a mean vector µ and covariance matrix
Σ. The optimal static-feature sequence ĉ is given by

ĉ = PW>Σ−1µ, P =
(
W>Σ−1W

)−1

(5)

As a result, smooth static-feature trajectories can be obtained
using dynamic features as constraints.

An MDN maps a linguistic-feature vector l to parameters of
a Gaussian mixture model (GMM). In this challenge, we used
a single MDN as an acoustic model. Assuming that outputs
of a neural network are used as mean and standard deviation
parameters in a statistical model, an objective function can be
defined as

L = P (o | l,λMDN) = N (o |µ,Σ) =

T∏
t=1

N (ot |µt,Σt)(6)

where the mean and covariance parameter are obtained byµt =
[µt,1, µt,2, . . . , µt,D]> and Σt = diag[σ2

t,1, σ
2
t,2, . . . , σ

2
t,D],

respectively. Then, the mean and standard deviation at frame
t, µt,d and σt,d, can be obtained as follows:

µt,d = g
(µ)
d (lt,λMDN) (7)

σt,d = exp(g
(σ)
d (lt,λMDN)) (8)

where g(µ)d (lt,λMDN) and g(σ)
d (lt,λMDN) are the activations

of the output layer corresponding to mean and standard devi-
ation parameters, given lt and λMDN, respectively. The MDN
parameter setλMDN is optimized in the sense of maximum like-
lihood as follows:

λ̂MDN = arg max
λMDN

P (o | l,λMDN)

= arg max
λMDN

T∏
t=1

N (ot |µt,Σt) (9)

The MDN can be trained by standard back-propagation.

2.2.2. Trajectory training

In the MDN-based SPSS framework, although the frame-level
objective function is used for training a MDN, the sequence-
level (page-level) objective function is used for parameter gen-
eration. To address this inconsistency between training and syn-
thesis, a trajectory training method is introduced into the train-
ing process of MDNs.

The traditional likelihood function in Eq. (6) can be refor-
mulated as a trajectory likelihood function by imposing the ex-
plicit relationship between static and dynamic features, which
is given by o = Wc [16]. The trajectory likelihood function of
c is then written as

LTrj =
1

Z
P (o | l,λ) = P (c | l,λ) = N (c | c̄,P ) (10)

where Z is a normalization term. Inter-frame correlation is
modeled by the covariance matrix P that is generally full. Note
that the mean vector c̄ is equivalent to the generated static-
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Figure 3: Overview of trajectory training considering GV for
MDN-based SPSS

feature sequence expressed by Eq. (5). The parameter set λ
is estimated by maximizing the trajectory likelihood LTrj.

2.2.3. Trajectory training considering GV

To address the over-smoothing problem of generated parame-
ter trajectories, the concept of parameter generation consider-
ing the GV was introduced into the training of DNNs [9]. In
this challenge, we introduce the trajectory training considering
the GV into the training of a MDN-based acoustic model. Fig-
ure 3 shows an overview of trajectory training considering the
GV. The objective function LGVTrj is given by

LGVTrj = P (c | l,λ)P (v(c) | l,λ,λGV)wT

= N (c | c̄,P )N (v(c) |v(c̄),ΣGV)wT (11)
where v(c) = [v(1), . . . , v(D)]> is a GV vector of the static-
feature vector sequence c. The GV vector is calculated page by
page as follows:

v(d) =
1

T

T∑
t=1

(ct(d)− 〈c(d)〉)2, 〈c(d)〉 =
1

T

T∑
t=1

ct(d) (12)

where d is an index of the feature dimension. The mean
vector of the probability density for the GV, v(c̄), is de-
fined as the GV of the mean vector of the trajectory likeli-
hood function in Eq. (10), which is equivalent to the GV of
the generated parameters expressed by Eq. (5). The GV like-
lihood P (v(c) | l,λ,λGV) works as a penalty term to make
the GV of the generated parameters close to that of the natu-
ral ones. The balance between the two likelihoods P (c | l,λ)
and P (v(c) | l,λ,λGV) is controlled by the GV weight w. The
parameter set λ, which consists of the parameter of the MDN
λMDN and the covariance matrix ΣGV of the GV vector, is es-
timated by maximizing the objective function LGVTrj. The pa-
rameters are optimized so that the GVs of generated trajectories
get close to the natural ones.

The optimal static-feature vector sequence ĉ is determined
by maximizing the objective function LGVTrj as follows:

ĉ = arg max
c
P (c | l,λ)P (v(c) | l,λ,λGV) (13)

Since this estimate is equivalent to the maximum likelihood es-

timate by using the basic parameter generation algorithm ex-
pressed by Eq. (4), the basic parameter generation algorithm
can be used for this framework.

3. Blizzard Challenge 2017 evaluation
3.1. Training corpus construction conditions

The collection of provided children’s audiobooks consisted of
56 books with a total 1258 pages. An SR was trained to
construct a training corpus for SPSS. The CMU Pronouncing
Dictionary [17] and the WSJ0, WSJ1 [18], and TIMIT [19]
databases were used to train the SR. Speech signals were sam-
pled at a rate of 16 kHz and windowed by a 25-ms hamming
window with a 10-ms shift. The acoustic-feature vector con-
sisted of 39 components composed of 12-dimensional mel-
frequency cepstral coefficients (MFCCs) including the energy
with the first- and second-order derivatives. A three-state left-
to-right GMM-HMM without skip transitions was used. The
trained GMMs had 32 mixtures for pause and 16 mixtures for
the other phonemes. A tri-gram LM was created based on the
text of the provided children’s audiobooks. The HTK [20] and
SRILM [21] were used to construct the SR. The training recipe
was the same as that of the HTK Wall Street Journal Training
Recipe [22]. Thresholds of word-match accuracy for adaptation
and training corpora were set to 90% [6]. After pruning, the
training corpus for SPSS consisted of 921 pages.

3.2. TTS system construction conditions

Linguistic features were extracted using Festival [23], Stanford
Parser [24], SyntaxNet [25], and gensim [26]. The speech sig-
nals were sampled at a rate of 44.1 kHz and windowed with a
fundamental frequency (F0)-adaptive Gaussian window with a
5-ms shift. Voting results concerning F0 (estimated by using
RAPT [27], SWIPE’ [28], and REAPER [29]) were taken as F0

of acoustic features.
The HMM-based SPSS system was constructed to estimate

phoneme-level alignments. The acoustic-feature vectors were
composed of 228 dimensions: 49-dimension STRAIGHT [30]
mel-cepstral coefficients including the 0th coefficient, F0, 24-
dimension mel-cepstral analysis aperiodicity measures, and
their first- and second-order derivatives. A five-state left-to-
right context-dependent multi-stream multi-space probability
distribution hidden semi-Markov model (MSD-HSMM) [31,
32, 33, 34] without skip transitions was used as the acoustic
model. Each state output probability distribution was composed
of a spectrum, F0, and aperiodicity streams. The spectrum and
aperiodicity streams were modeled using single multi-variate
Gaussian distributions with diagonal covariance matrices. The
F0 stream was modeled using an MSD consisting of a Gaussian
distribution for voiced frames and a discrete distribution for un-
voiced frames. State durations were modeled using a Gaussian
distribution. The HTS [35] and SPTK [36] were used for con-
structing the HMM-based SPSS system.

In the MDN-based SPSS system, the input feature was a
1685-dimensional feature vector consisting of 925 linguistic
features including binary features and numerical features for
contexts, 10 duration features, 150-dimensional word code, and
600-dimensional phrase code. Fix-dimensional normally dis-
tributed random vector was used as word and phrase codes, and
pre-trained word2vec and doc2vec were used to measure word
and phrase similarity. The output feature was a 107-dimensional
feature vector consisting of 69-dimension STRAIGHT mel-
cepstral coefficients, F0 acquired by linearly interpolating val-



Table 2: Evaluation results
Page domain Sentence domain SUS

System OI PL SP ST IN EM LE NAT SIM WER
A 47 ± 9∗ 46 ± 10∗ 47 ± 9∗ 47 ± 10∗ 47 ± 10∗ 47 ± 10∗ 47 ± 9∗ 4.7 ± 0.6∗ 4.5 ± 0.8∗ –
I 38 ± 10∗ 38 ± 10∗ 36 ± 11∗ 36 ± 12∗ 37 ± 11∗ 38 ± 11∗ 36 ± 11∗ 4.0 ± 0.9∗ 4.0 ± 0.9∗ 34 ± 31
G 32 ± 10 31 ± 10 34 ± 11 33 ± 11 33 ± 10∗ 34 ± 11 32 ± 10 3.6 ± 0.9 3.1 ± 1.2 35 ± 34
L 31 ± 10 30 ± 10 31 ± 12 31 ± 12 31 ± 11 33 ± 11 31 ± 10 3.6 ± 0.9 3.0 ± 1.1 30 ± 32
E 31 ± 12 32 ± 12 27 ± 13∗ 27 ± 13∗ 28 ± 13∗ 32 ± 12 28 ± 12∗ 3.5 ± 1.0 3.9 ± 0.9∗ 38 ± 32∗

P 31 ± 11 31 ± 10 31 ± 11 32 ± 12 32 ± 11 34 ± 11 30 ± 10 3.4 ± 1.0 3.6 ± 1.0∗ 38 ± 32∗

B 27 ± 11∗ 27 ± 11∗ 25 ± 12∗ 26 ± 12∗ 27 ± 12∗ 30 ± 11∗ 25 ± 11∗ 3.3 ± 1.0∗ 3.7 ± 1.0∗ 42 ± 31∗

M 26 ± 10∗ 25 ± 10∗ 24 ± 11∗ 27 ± 11∗ 26 ± 11∗ 26 ± 11∗ 25 ± 10∗ 3.2 ± 0.9∗ 3.1 ± 1.0 33 ± 33
K 26 ± 10∗ 27 ± 10∗ 26 ± 12∗ 25 ± 12∗ 26 ± 11∗ 28 ± 11∗ 25 ± 10∗ 3.1 ± 1.0∗ 2.9 ± 1.1 42 ± 31∗

Q 25 ± 10∗ 26 ± 10∗ 23 ± 11∗ 23 ± 12∗ 24 ± 11∗ 28 ± 11∗ 23 ± 10∗ 3.1 ± 1.1∗ 2.8 ± 1.1 44 ± 31∗

D 25 ± 10∗ 23 ± 10∗ 30 ± 12 28 ± 12∗ 26 ± 11∗ 24 ± 11∗ 26 ± 10∗ 2.7 ± 0.9∗ 2.5 ± 1.0∗ 30 ± 34
H 24 ± 9∗ 24 ± 9∗ 25 ± 11∗ 25 ± 11∗ 23 ± 10∗ 21 ± 10∗ 24 ± 9∗ 2.7 ± 1.0∗ 2.1 ± 0.9∗ 39 ± 31∗

J 22 ± 9∗ 21 ± 9∗ 24 ± 11∗ 23 ± 11∗ 22 ± 10∗ 20 ± 11∗ 22 ± 10∗ 2.7 ± 1.0∗ 2.6 ± 1.0∗ 35 ± 33
F 21 ± 10∗ 22 ± 10∗ 24 ± 11∗ 24 ± 11∗ 24 ± 11∗ 25 ± 11∗ 21 ± 10∗ 2.6 ± 1.0∗ 2.4 ± 1.0∗ 46 ± 29∗

C 16 ± 8∗ 15 ± 8∗ 21 ± 11∗ 19 ± 10∗ 18 ± 10∗ 18 ± 10∗ 17 ± 9∗ 1.7 ± 0.7∗ 1.9 ± 0.9∗ 38 ± 32∗

O 11 ± 7∗ 11 ± 7∗ 22 ± 12∗ 19 ± 12∗ 16 ± 11∗ 16 ± 10∗ 11 ± 7∗ 1.5 ± 0.7∗ 1.5 ± 0.7∗ 60 ± 28∗

N 8 ± 6∗ 8 ± 6∗ 16 ± 11∗ 13 ± 11∗ 12 ± 9∗ 11 ± 8∗ 7 ± 6∗ 1.1 ± 0.5∗ 1.2 ± 0.5∗ 85 ± 19∗

ues in unvoiced parts, voiced/unvoiced binary value, and 34-
dimension mel-cepstral analysis aperiodicity measures. The
input features were normalized to be within 0.0–1.0 based on
their minimum and maximum values in the training data, and
the output features were normalized to have zero-mean unit-
variance. The input and output features were time-aligned
frame-by-frame by using the trained MSD-HSMM. A single
MDN, which models spectral, excitation, and aperiodicity pa-
rameters, was trained. The architecture of the MDNs was three
hidden layers with 8000 units per layer. The sigmoid activa-
tion function was used in the hidden layers and the linear acti-
vation function was used in the output layer. For training the
MDNs, a mini-batch stochastic gradient descent (SGD)-based
back-propagation algorithm and dropout with a probability of
0.6 were used. The GV weight w was set to 0.001 in Eq. (11).
Dynamic range compressor (DRC) was applied to power of syn-
thesized speech.

3.3. Experimental conditions of listening test

Large-scale subjective listening tests were conducted by the
Blizzard Challenge 2017 organization. The listeners included
paid participants, speech experts, and volunteers. The paid par-
ticipants (native speakers of English) took the test in soundproof
listening booths using high-quality headphones. The speech ex-
perts and volunteers included non-native speakers of English.

To evaluate the page domain of a children’s book, 7-page-
domain-criteria 60-point mean opinion score (MOS) tests were
conducted. The terms in the parentheses were used to label the
points 10 for “bad” and 50 for “excellent” on the scale. Listen-
ers listened to one whole page from a children’s book and chose
a scored from 1 to 60 based on the following 7-page-domain-
criteria.

• overall impression (OI): “bad” to “excellent”
• pleasantness (PL): “very unpleasant” to “very pleasant”
• speech pauses (SP): “speech pauses confus-

ing/unpleasant” to “speech pauses appropriate/pleasant”
• stress (ST): “stress unnatural/confusing” to “stress natu-

ral”
• intonation (IN): “melody did not fit the sentence type” to

“melody fitted the sentence type”
• emotion (EM): “no expression of emotions” to “authen-

tic expression of emotions”
• listening effort (LE): “very exhausting” to “very easy”

To evaluate the sentence domain of children’s book, 2-
sentence-domain-criteria 5-point MOS tests were conducted.
Listeners listened to one sample and chose a scored from 1 to 5
based on the following 2-sentence-domain-criteria.

• naturalness (NAT): “completely unnatural” to “com-
pletely natural”

• similarity (SIM): “sounds like a totally different person”
to “sounds like exactly the same person”

To evaluate intelligibility, the participants were asked to
transcribe semantically unpredictable sentences (SUS) by typ-
ing in the sentence they heard. The average word error rate
(WER) was calculated from these transcripts.

3.4. Experimental results

Table 2 lists the means and standard deviations of the listening
test results from the all listeners. Systems A, B, C, D, and L
represent the following systems.

• A: natural speech
• B: unit-selection benchmark system
• C: HMM benchmark system
• D: DNN benchmark system
• L: NITech system

The ordering of systems is in descending order of NAT.
Wilcoxon’s signed rank tests were used to determine signifi-
cance difference [37]. In Table 2, asterisk ∗ means a statistically
significant difference between system L and other systems.

The page-domain results show that system L ranked 4th,
5th, 3rd, 4th, 4th, 4th, and 3rd out of the 16 TTS systems listed in
Table 2 for page-domain-criteria OI, PL, SP, ST, IN, EM, and
LE, respectively. Only system I statistically significantly better
than our system L except IN criterion. Overall, our system L
achieved good performance. The sentence-domain results show
that system L ranked 3rd and 7th for sentence-domain-criteria
NAT and SIM, respectively. Our system L achieved naturally



sounding synthesized speech. By contrast, SIM was the aver-
age score compared with high score NAT. Up until now, as a
weak point of SPSS systems, low speaker similarity been cited.
Therefore, we should improve the speaker similarity by SPSS
approaches. In terms of intelligibility, system L achieved the
lowest WER.

4. Conclusion
We described the Nagoya Institute of Technology (NITech) text-
to-speech (TTS) system for the Blizzard Challenge 2017. We
redesigned linguistic features for statistical parametric speech
synthesis (SPSS) based on audiobooks. Additionally, we intro-
duced the parameter trajectory generation process considering
the global variance into the training of mixture density network
based acoustic models. Large-scale subjective evaluation re-
sults show that the NITech TTS system synthesized naturally
sounding and intelligible speech. However, we need to improve
speaker similarity by SPSS approaches. Future work includes
improving robustness of outliers and introducing direct speech
waveform prediction models, such as WaveNet [38], to avoid
degradation of speech quality accompanying use of a vocoder.

5. Acknowledgements
This research and development work was partly supported by
the MIC/SCOPE #162106106.

6. References
[1] A. W. Black and K. Tokuda, “The Blizzard Challenge – 2005:

Evaluating corpus-based speech synthesis on common datasets,”
Interspeech 2005, pp. 77–80, 2005.

[2] S. King, “Measuring a decade of progress in text-to-speech,” Lo-
quens, vol. 1, no. 1, 2014.

[3] S. King and V. Karaiskos, “The blizzard challenge 2013,” Blizzard
Challenge 2013 Workshop, 2013.

[4] ——, “The blizzard challenge 2016,” Blizzard Challenge 2016
Workshop, 2016.

[5] “Blizzard Challenge 2017,” http://www.synsig.org/index.php/
Blizzard Challenge 2017.

[6] K. Sawada, C. Asai, K. Hashimoto, K. Oura, and K. Tokuda, “The
NITech text-to-speech system for the Blizzard Challenge 2016,”
Blizzard Challenge 2016 Workshop, 2016.

[7] R. Dall, K. Hashimoto, K. Oura, Y. Nankaku, and K. Tokuda,
“Redefining the linguistic context feature set for HMM and DNN
TTS through position and parsing,” Interspeech 2016, pp. 2851–
2855, 2016.

[8] L.-H. Chen, Y. Jiang, M. Zhou, Z.-H. Ling, and L.-R. Dai, “The
USTC system for Blizzard Challenge 2016,” Blizzard Challenge
2016 Workshop, 2016.

[9] K. Hashimoto, K. Oura, Y. Nankaku, and K. Tokuda, “Trajectory
training considering global variance for speech synthesis based on
neural networks,” 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing, pp. 5600–5604, 2016.

[10] C. M. Bishop, “Mixture density networks,” Aston University,
1994.

[11] H. Zen and A. Senior, “Deep mixture density networks for acous-
tic modeling in statistical parametric speech synthesis,” 2014
IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 3844–3848, 2014.

[12] K. Tokuda, Y. Nankaku, T. Toda, H. Zen, J. Yamagishi, and
K. Oura, “Speech synthesis based on hidden Markov models,”
IEEE, vol. 101, no. 5, pp. 1234–1252, 2013.

[13] Q. Le and T. Mikolov, “Distributed representations of sen-
tences and documents,” 31st International Conference on Ma-
chine Learning, 2014.

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estima-
tion of word representations in vector space,” arXiv:1301.3781,
2013.

[15] H. Zen, A. Senior, and M. Schuster, “Statistical parametric speech
synthesis using deep neural networks,” 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, pp.
7962–7966, 2013.

[16] H. Zen, K. Tokuda, and T. Kitamura, “Reformulating the HMM
as a trajectory model by imposing explicit relationships between
static and dynamic features,” Computer Speech and Language,
vol. 21, no. 1, pp. 153–173, 2007.

[17] “CMU Pronouncing Dictionary,” http://www.speech.cs.cmu.edu/
cgi-bin/cmudict.

[18] D. B. Paul and J. M. Baker, “The design for the wall street journal-
based CSR corpus,” The workshop on Speech and Natural Lan-
guage, pp. 357–362, 1992.

[19] J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett,
N. Dahlgren, and V. Zue, “TIMIT: acoustic-phonetic continuous
speech corpus,” Linguistic Data Consortium, 1993.

[20] “HTK,” http://htk.eng.cam.ac.uk/.
[21] “SRILM,” http://www.speech.sri.com/projects/srilm.
[22] K. Vertanen, “Baseline WSJ acoustic models for HTK

and Sphinx: Training recipes and recognition experiments,”
Cavendish Laboratory, 2006.

[23] “Festival,” http://www.festvox.org/festival/.
[24] “Stanford Parser,” http://nlp.stanford.edu/software/lex-parser.

shtml.
[25] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta,

K. Ganchev, S. Petrov, and M. Collins, “Globally normalized
transition-based neural networks,” arXiv:1603.06042, 2016.

[26] R. Rehurek and P. Sojka, “Software framework for topic mod-
elling with large corpora,” Proceedings of the LREC 2010 Work-
shop on New Challenges for NLP Frameworks, pp. 45–50, 2010.

[27] D. Talkin, “A robust algorithm for pitch tracking (RAPT),” Speech
Coding and Synthesis, pp. 495–518, 1995.

[28] A. Camacho, “SWIPE: a sawtooth waveform inspired pitch esti-
mator for speech and music,” Ph.D. Thesis, University of Florida,
2007.

[29] “REAPER,” https://github.com/google/REAPER.
[30] H. Kawahara, I. Masuda-Katsuse, and A. Cheveigne, “Restructur-

ing speech representations using a pitch-adaptive time-frequency
smoothing and an instantaneous-frequency-based F0 extraction:
Possible role of a repetitive structure in sounds,” Speech Commu-
nication, vol. 27, pp. 187–207, 1999.

[31] H. Zen, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura,
“Hidden semi-Markov model based speech synthesis,” 8th Inter-
national Conference on Spoken Language Processing, pp. 1185–
1180, 2004.

[32] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Ki-
tamura, “Simultaneous modeling of spectrum, pitch and duration
in HMM-based speech synthesis,” Eurospeech 1999, pp. 2347–
2350, 1999.

[33] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kita-
mura, “Speech parameter generation algorithms for HMM-based
speech synthesis,” 2000 IEEE International Conference on Acous-
tics, Speech and Signal Processing, pp. 936–939, 2000.

[34] K. Tokuda, T. Masuko, N. Miyazaki, and T. Kobayashi, “Multi-
space probability distribution HMM,” IEICE Transactions on In-
formation & Systems, vol. E85-D, no. 3, pp. 455–464, 2002.

[35] “HTS,” http://hts.sp.nitech.ac.jp/.
[36] “SPTK,” http://sp-tk.sourceforge.net/.
[37] R. A. J. Clark, M. Podsiadlo, M. Fraser, C. Mayo, and S. King,

“Statistical analysis of the blizzard challenge 2007 listening test
results,” Blizzard Challenge 2007 Workshop, 2007.

[38] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu, “WaveNet: A generative model for raw audio,”
arXiv:1609.03499, 2016.

http://www.synsig.org/index.php/Blizzard_Challenge_2017
http://www.synsig.org/index.php/Blizzard_Challenge_2017
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://htk.eng.cam.ac.uk/
http://www.speech.sri.com/projects/srilm
http://www.festvox.org/festival/
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml
https://github.com/google/REAPER
http://hts.sp.nitech.ac.jp/
http://sp-tk.sourceforge.net/

	 Introduction
	 NITech TTS system
	 Design of linguistic features for SPSS based on audiobooks
	 DNN-based SPSS
	 MDN-based SPSS
	 Trajectory training
	 Trajectory training considering GV


	 Blizzard Challenge 2017 evaluation
	 Training corpus construction conditions
	 TTS system construction conditions
	 Experimental conditions of listening test
	 Experimental results

	 Conclusion
	 Acknowledgements
	 References

