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Abstract
This paper presents I2R-NWPU-NUS team’s text-to-speech
system to Blizzard Challenge 2018. Instead of using unit selec-
tion based concatenative speech sysnthesis previous years. we
adopt the general deep neural network (DNN) statistical para-
metric method to synthesize the speech. The frame level acous-
tic parameters and phone duration are modelled using bidirec-
tional long short-term memory (BLSTM) recurrent neural net-
works (RNNs). For duration model, 5 states of phone dura-
tion are used to predict the duration of each phoneme. Finally,
the predicted acoustic parameters (MGC, LF0, V/UV) are taken
as inputs to WORLD vocoder to generate the synthetic speech.
The listening tests show improvement compared with the results
of DNN baseline system.
Index Terms:Text-To-Speech, Blizzard Challenge 2018,
LSTM-RNN, HMM, WORLD

1. Introduction
In Blizzard Challenge 2018, the EH1 task is to require the par-
ticipating teams to deliver high quality synthesized speech from
their text-to-speech systems given about 6.5 hours speech data
from professionally-produced children’s audiobooks, all data
are from a single speaker. In addition, the organizers also pro-
vided cleaned-up text, sentence-level alignment between text
and speech, segmented waveforms and associated extracted lin-
guistic and acoustic features. Each participating team is then
required to synthesize news items, new audiobooks, and seman-
tically unpredictable sentences (SUS) with the test set, some of
which are from previous years. The systematic listening tests
are conducted by involving a variety of listeners to evaluate sub-
mitted synthesized speech.

For Blizzard Challenge 2017, we used a trajectory tiling
method guided by a deep neural network to build our unit selec-
tion text-to-speech (TTS) system [1], which made several sig-
nificant improvements. Firstly, phones are taken as the units
instead of frames. The candidated phones are chosen and then
concatenated together for synthesizing the target waveform.
Secondly, the KLDs are used to measure divergence between
spectrum HMMs of candidate and target phones for preselecting
the phone candidates. Thirdly, in keeping with the unit change,
the concatenation and target costs are also redefined.

For Blizzard Challenge 2018, we use a statistical paramet-
ric speech synthesis method. The BSLTM-RNNs [2] are used

to model 5 states of phone duration and acoustic features in-
cluding mel-generalized cepstral (MGC), BAP, LF0, V/UV flag
and its corresponding dynamic features ∆ct and ∆2ct. The fi-
nal vocoder parameters are generated using the maximum like-
lihood parameter generation algorithm (MLPG) [3] by taking
the predicted static and dynamic features into account to get a
smooth trajectory. Finally the WORLD vocoder is used to syn-
thesize the speech.

The organization of the paper is as follows. In Section 2 we
present how to prepare and process the given data for develop-
ing the system. In section 3, the system is described in details.
In Section 4 , the evaluation results are shown and discussed .
Finally we conclude our work in Section 5.

2. Data Preparation
2.1. Transcription of Audiobook Dataset

Several audiobooks in the dataset are not transcribed. Thus we
only use 54 stories of the dataset consists of 7119 sentences.
Firstly, we convert the provided audio files to 16 bits wave files
at sampling rate of 16k Hertz. Then these wave files are seg-
mented into sentences and the corresponding text is split ac-
cordingly.

2.2. Full-Context Label and Alignment

The Festival frontend toolkit are used to extract the phoneme
level full-context linguistic features including features on
phoneme, syllable, word and syntactic phrase levels [4]. They
are largely based on [5]. Then the state level alignment is done
using the HTS [6] toolkit. For duration modeling, we predict 5
states of phone duration at state level, which can be modelled
more accuracy than predictive duration at phone level. The HTS
format full-context labels are converted by a question set, which
consists of 416 questions, to binary features. Then the binary
features are taken as inputs to duration model. For each input of
the acoustic model, we append the forward and backward loca-
tion information of current frame to the converted full-context
label and time-aligned frame-by-frame with the acoustic fea-
tures.

2.3. Acoustic Features

After we processed the provided original audio files, we use
WORLD to extract the acoustic features. The acoustic features
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Figure 1: System Architecture.

ot consist of static features ct, called vocoder parameters, and
corresponding dynamic features ∆ct and ∆2ct, written as

ot = [c>t ,∆c>t ,∆
2c>t ]> (1)

The dynamic features are calculated from the sequence of static
features and are used as a constraint to produce smooth param-
eter trajectories during generation. The extracted features in-
cludes mel-generalized cepstral (MGC), BAP, LF0 and V/UV
flag.

3. Overview of the System
The overview of the proposed text-to-speech (TTS) system, is
depicted in Figure 1. In the training processing, the acoustic pa-
rameters and phone duration are modelled with BLSTM-RNNs
using the selected dataset. In the synthesis processing, 5 states
of phone duration are predicted and the location information are
appended to the linguistic feature as input of acoustic model,
then MLPG is applied to the predicted acoustic parameters to
get vocoder parameters. Finally we use the WORLD vocoder
to synthesize the target waveform.

3.1. Acoustic Model

3.1.1. Deep Bidirectional LSTM Recurrent Neural Network

As powerful sequence neural networks, RNNs have come into
sight again as a potential acoustic model for statistical paramet-
ric speech synthesis (SPSS). The LSTM architecture introduced
in 1997 [7], is particularly attractive because it addresses the
vanishing gradient problem in standard RNNs. Recent research
studies have shown that LSTMs can attain much better perfor-
mance than other deep neural networks on SPSS. Especially,
the bidirectional RNN [8] can capture the sequence context in-
formation more effectively. Our acoustic model consists of 6
hidden layers of which the bottom 3 hidden layers are feed-
forward structure with 512 nodes per layer, while the top 2 lay-
ers are bidirectional LSTM-RNNs structure (512 nodes) which
followed by a fully connected output layer without activation.

Input features for duration model are generated from the
full-context labels. The categorical features such as POS,
phoneme IDs, and phrase types are transferred into binary fea-
tures. The positions of words, syllables and phonemes are nu-
merical features. The input vectors consist of totally 416 dimen-
sions, where 373 dimensions are binary features for categori-
cal linguistic contexts, and 43 dimensions including numerical
sentence-level and linguistic contexts features.

The main ingredient input features for frame level acous-
tic modeling are the same as those used for duration modeling,
9 dimensions frame information are appended to the input fea-
tures of duration model, which consist of forward and backward
fraction through state, frame length of state, state index, frame
length of phone, fraction of the phone made up by current state,
forward and backward fraction through phone. The acoustic
features are extracted by WORLD with 5 ms frame hop to form
a vector of 199 dimensions which consists of MGCs (60), BAP
(5), LF0 (1) and their corresponding ∆ and ∆2 features, besides
a V/UV flag.

In all experiments, we use the Merlin package [9] and Ten-
sorflow [10] to draw out the acoustic parameters and learn the
deep neural networks respectively. We also investigated the
mixture density network in BLSTM based TTS and end-to-end
speech synthesis for EH1 task. The informal subjective listen-
ing tests show that the proposed system performs much better
than these two systems.

3.1.2. Mixture Density Network

For mixture density network (MDN), the distributions of acous-
tic features given linguistic features can be a mixture of Gaus-
sian distribution, because the same text can be spoken by hu-
man in many different manners. The outputs of a neural net-
work trained by minimizing the squared loss function approx-
imate the conditional mean of the outputs in the training data.
This method may not be able to model distributions more com-
plex than a unimodal Gaussian distribution. To address these
issues, Zen et al. [11] have examined the usage of MDN as
acoustic model for SPSS. The MDNs can be used to do mul-
timodal regression and to predict variances as well. For MDN
experiments, we use the same acoustic features and same archi-
tectures as BLSTM system, except with different outputs. The
results showed that MDN performs worse than BLSTM because
of over smoothed parameter trajectories and smaller energy.

3.1.3. End-to-End Speech Synthesis

A traditional statistical parametric TTS system consists of a text
frontend extracting linguistic features, an acoustic model, a du-
ration model, and a complex signal-processing-based vocoder.
These components design require broad domain expertise. They
are also trained independently, so errors from each component
may compound. Based on sequence-to-sequence with attention
mechanism, Y. Wang et al. [12] proposed an end-to-end TTS
model named Tacotron, which attains a 3.82 subjective 5-scale
mean opinion score on US English. The system outperforms
all the existing parametric system in naturalness. It does not
require phoneme-level or state-level alignment, we can simply
train the model with original wave files and corresponding tran-
scripts. We used the same acoustic features mentioned in sec-
tion 2, and the same hyper-parameters and network architec-
tures described in [12] except the reduction factor r is set to
10. Difference from BLSTM and MDN, the length of outputs
of Tacotron is usually much longer than that of the inputs. This
causes quick accumulation of prediction errors. The larger dif-
ference between input and output lengths, the more difficult it
is to train the model. Hence, we set larger reduction factor r for
5ms frame shift length to reduce the length gap between inputs
and outputs.

We found that the end-to-end system’s performance is very
sensitive to the training dataset. For blizzard challenge 2011’s
released dataset, Tacotron can get much better results than
BLSTM, but can not even learn good alignment when using the



Figure 2: The prosody reference encoder module.

dataset of this year. The model barely predicts intelligible sen-
tences in most cases. We supposed that attention mechanism is
the most critical part of end-to-end system to learn the mapping
between input transcripts and output acoustic features. At each
decoder time step, a stateful recurrent layer produces the atten-
tion query to extract the corresponding context of input features,
then the context vector guides the decoder to generate appropri-
ate acoustic features. Incorrect attention context vector leads
to the decoder predictions fit the targets poorly. Hence a more
robust attention mechanism is required. Another reason is that
the speaker will employ various timbre and rhythm to show the
characteristics of the different characters in audiobook, such as
age, gender and mood, speech segments from the dialogue or
the aside differ widely in both acoustic and prosodic aspects. It
is hard for Tacotron to learn an appropriate alignment between
the input transcripts and output features for with the current at-
tention alignment mechanism.

3.2. Reference Encoder

In order to produce more realistic speech, the model must take
into account many external factors that are not given in a simple
text. Such factors include the stress, intonation, and rhythm of
the speech, are referred to prosody. In order to avoid labeling
prosody manually, Skerry-Ryan et al. [13] proposed an encoder
architecture named reference encoder, the encoder extracts a
fixed-length representation of prosody from acoustic features.
The fixed-length representation of prosody can be used to con-
trol the predicted prosody explicitly. As mentioned above, the
speaker employs various timbre and rhythm to show the charac-
teristics of the different characters in audiobook. The different
types of prosodies can be extracted by the reference encoder
automatically. In synthesis stage, we need to choose appropri-
ate reference acoustic features to generate speech with similar
prosody. For example, we can choose more expressive refer-
ence segments from the dialogue to synthesize speech.

We extend the BLSTM architecture by adding a reference
encoder module which takes the reference signal as input, and
computes a fixed-length embedding from it. Then prosody em-

Figure 3: The pitch trajectory of same sentence under different
reference.

bedding is combined with the linguistic feature via a broadcast-
concatenation. Figure 2 illustrates the structure of reference
encoder module. For the reference encoder architecture, we
use a 6-layer convolutional network, each layer is composed
of 3×3 filters with 2×2 stride. SAME padding, RELU activa-
tion and batch normalization are applied to each convolutional
layer. Take the outputs of the stacked convolutional layers as
inputs of a recurrent network layer with 128-nodes Gated Re-
current Unit (GRU), the final 128-dimensional outputs of the
GRU are projected to the desired dimensionality. For the same
input sentence, there are significant differences between the two
predicted pitch tracks under different reference signals. Figure
3 shows two predicted pitch tracks for the same utterance under
different reference signals. We can see that the widely varies be-
tween the two pitch trajectories which demonstrate the prosody
extraction ability of reference encoder module.

3.3. Vocoder

WaveNet [14] is an autoregressive generative model for wave-
form synthesis. It operates at a very high temporal resolution of
raw audios and produces human-level audio of quality. In com-
parison to the linguistic and acoustic features used in WaveNet,
the vocoder features are a simpler and lower-level acoustic rep-
resentation of audio signals. So we usually take WaveNet as
a neural vocoder to generate high quality audio. In our ex-
periments, we build a WaveNet with 30 dilated convolution
layers, grouped into 3 dilation cycles, i.e. the dilation rate of
layer k(k = 0...29) is 2k(mod10). For local condition fea-
tures, we use the same acoustic features consisting of MGC,
BAP, LF0, and V/UV. We train WaveNet using ground truth
features and then synthesize speech using features predicted by
BLSTM system. Because of the large mismatch between groud
truth and predicted features, the final synthesized speech by
WaveNet contains too much noise and is not as good as synthe-
sized speech by WORLD. We tried to retrain the WaveNet but
get worse results. There may be errors in our implementation
while training WaveNet vocoder, so finally we used WORLD as
vocoder.

4. Subjective results
This section discusses the evaluation results of our system in
Blizzard Challenge 2018 in details. Our system is identified as
”G”. Whereas system A is natural speech, B is the Festival unit-
selection benchmark system, C is the HMM benchmark built
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Figure 4: Results of the overall impression MOS of audiobook
paragraphs.
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Figure 5: Results of the naturalness MOS.

using the HTS toolkit, D and E are DNN benchmark built using
the HTS toolkit. Systems F to O are the 10 participating teams.
The submitted synthesized audio files go through comprehen-
sive listening tests which include four major parts.

• Part 1 is made up of of two multi-dimensional tests of the
book paragraphs. The tested dimensions are overall im-
pression, pleasantness, speech pauses, stress, intonation,
emotion and listening effort.

• Part 2 contains two naturalness tests of the book sen-
tences.

• Part 3 is a similarity test of the book sentences. The lis-
teners are requested to judge the similarity between the
synthesized speech and the provided speech.

• Part 4 composed of two intelligibility tests of the SUS
speech. The sentences are semantically unpredictable,
and it is difficult to make a guess of a word through the
surrounding words. The listeners are requested to write
down the words after listening of a sentence.

In the tests, three types of listeners involved: paid listeners, on-
line volunteers and speech experts.
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Figure 6: Results of the similarity MOS.
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Figure 7: WER in the SUS testing.

The test results include the overall impression, naturalness,
similarity and intelligibility as evaluated by all types of listen-
ers. All the figures show results of all the systems.

Figure 4 shows the results of the overall impression MOS
of audiobook paragraphs given by all listeners for all the sys-
tems. Figure 5 shows the results of the naturalness MOS of all
the systems given by all listeners. Figure 6 shows the results
of the similarity MOS of all the systems given by all listeners.
Figure 7 shows the word error rate of all the systems based on
the evaluation of all listeners. The WER decreases compared
with our result of last year. Compared to our results of last
year, the unit-selection system can get higher quality speech
than conventional BLSTM neural networks. Advanced TTS
with WaveNet will be our focus in near future.

5. Conclusions
In this paper we introduce the development of our speech syn-
thesis system to Blizzard Challenge 2018. This time we use the
general BLSTM as speech synthesis system. Mixture density
network and end-to-end architectures are investigated to build
different TTS system, and reference encoder is applied to con-



trol the predicted prosody. The evaluation results indicate that
the BLSTM system is a stable baseline system comparing with
end-to-end system.
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