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Abstract
In this work, we describe the TL-NTU’s text-to-speech

(TTS) system for the Blizzard Challenge 2018. Our efforts are
mainly focused on two aspects, which are the front-end text
analysis and back-end model training. For the front-end text
analysis, we include phonetic, syllable, and word-level linguis-
tic features using lexicon and word-level text analysis for full-
context feature extraction. For back-end model training, a feed-
forward Deep Neural Network (DNN) based phone duration
model and a bidirectional long short-term memory (BLSTM)
based acoustic model are trained. The performance of our sys-
tem is assessed by reporting the results of listening tests pro-
vided by the challenge organizer.
Index Terms: text-to-speech, DNN, BLSTM

1. Introduction
Text-to-speech (TTS) is a technique to generate speech signal
for given input text [1]. TTS can be realized by either selecting
appropriate sub-word units from a database of natural speech,
namely unit-selection, or generating speech from a statistical
parametric model, namely statistical parametric speech synthe-
sis (SPSS) [2]. Due to the flexibility to change its voice charac-
teristics and robustness, SPSS is growing in popularity. This is
also the focus of this work.

A typical SPSS system generally contains two parts, the
front-end text analysis and back-end model training. The aim
of front-end text analysis is to analyze the word sequence into
parametric features. Then the back-end models (duration and
acoustic model) are built mapping between text features and du-
ration/acoustic features. During synthesis stage, given a word
sequence, the speech waveform is reconstructed from the pre-
dicted parametric features of back-end models.

With the development of the deep learning techniques, i.e,
Deep Neural Network (DNN) [3–6], the DNN based SPSS
performance has been significantly improved. Here, the prior
decision-tree based context-dependent HMM is replaced by
DNN, which improves both naturalness and intelligibility [7].
To capture the information of long-span features, Long short-
term memory (LSTM) and Bidirectional LSTM (BLSTM)
were also employed in [8]. More recently, WaveNet [9–12]
based TTS methods was proposed. The WaveNet is a con-
volutional autoregressive model which produces high quality
speech. However, it generates synthesized speech with sample-
by-sample manner, which makes both off-line training and run-
time synthesis very slow. Another branch of recent break-
through in TTS is end-to-end learning [13–15], that directly
learns text features (character or letter) to wave audio (spectral
frequency) mapping. Compared with the conventional DNN
based TTS method, this approach abandon the front-end text

analysis. Moreover, by using an attention mechanism [16, 17],
both duration and acoustic features are modeled together.

For the Blizzard Challenge 2018, our submitted results
are BLSTM based SPSS method built on Merlin toolkit [18].
Specifically, we include phonetic, syllable, and word-level lin-
guistic features using lexicon and word-level text analysis for
front-end full-context feature extraction. For back-end, we use
a small feed-forward DNN for duration modeling and a BLSTM
for acoustic modeling1.

2. TL-NTU Speech Synthesis System
2.1. Data

2.1.1. Data Description

In the Blizzard Challenge 2018, the organizer released about 8.5
hours of a female British English data for training. The record-
ing consists of 56 children story books with the types of ”mp3”,
”m4a” and ”wma”. For most of audio books, utterance level
time-boundary segmentations were provided by the organizer.

2.1.2. Data preprocessing

The data provided by organizer cannot be directly applied for
system training. It contains long speech segments and non-
speech contents, e.g. ringing bell clips and over-long silence
parts. Besides, the audio data format is also inappropriate for
the acoustic feature extraction. To make the data appropriate
for training, we first normalize all the audio files into standard-
ized 16 KHz and 16 bit waveform files. Then we cut the audio
and the corresponding text into standalone pair-wise utterances,
according the time-boundary information provided by the orga-
nizer. To align the audio segments do not have time-boundary
information, we conduct force alignment using our automatic
speech recognition (ASR) system. Finally the overall data is
about 6.5 hours for training.

2.2. Front-end Generation

2.2.1. Full-context label generation

To train DNN models, we need to generate the front-end fea-
tures from given word-level utterances. Such features are nor-
mally named as the full-context label features, which is made
up of phonetic features, syllable features, word features, as well

1Actually, we also tried the end-to-end based TTS method, however
we were failed to generate quality synthesized speech for long utter-
ances. Besides, we also tried with WaveNet, which is used as a Vocoder
to generate speech from predict Vocoder features. It can consistent im-
prove the quality of synthesized speech. However, we abandon it due to
the time constraint.
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Figure 1: Illustration of the training and speech synthesis procedures for deep neural network based text-to-speech system

as features including part-of-speech and syntactic phrase etc.
The phonetic and syllable features are from lexicon, either by
ASR forced alignment or by lexicon looking-up, while the part-
of-speech and syntactic phrase are from syntactic parser as in-
dicated in [19]. There are overall 647 dimensional full-context
label features.

2.2.2. Frame-level feature generation

In order to train DNN acoustic models, the front-end features
contain both full-context label features as introduced in 2.2.1,
and frame-level features, indicating the position and duration
of the current phone [7]. Our frame-level features are four di-
mensional, including 3-dim position features and 1-dim dura-
tion features.

2.3. TL-NTU Overall TTS System Architecture

The overall TTS system architecture is illustrated in Figure 1.
We train two DNN models to realize speech synthesis. One is
a feed-forward DNN for duration modeling, and the other is a
BLSTM for acoustic modeling. Before training, we make most
of efforts on linguistic feature preparation. Except for the text
analysis, we also use our ASR system to obtain the phone-level
alignment as mentioned in 2.2.1. We use linguistic features and
phone durations to train duration model. Meanwhile, we use
linguistic plus frame-level features and acoustic features to train
acoustic model. The acoustic features are extracted from the
WORLD vocoder [20].

During the speech synthesis stage, we first do text analysis
to generate linguistic features, while use duration model to gen-

erate frame-level features. The two features are then combined
as input to the BLSTM acoustic models to predict the acoustic
features that are utilized by the WORLD vocoder to synthesize
the final waveform.

2.4. Duration model training

The feed-forward DNN is configured with 6 hidden layers with
1024 neurons for each layer. We use tanh as activation func-
tion.

To train the duration model, the input features are 647-dim
binary and numeric features converted from the full-context la-
bel, the output features are one dimensional indicating the du-
ration of the present phone in terms of frame number.

In total we have 7118 utterances, we randomly choose 218
utterances for validation and the rest is for training, we choose
the Adam [21] algorithm to optimize neural network training,
and the initial learning rate is set with 0.002. For the actual
training, min-batch is fixed with 64. Before training the input
features are min-max normalized.

2.5. Acoustic model training

We use the BLSTM to realize linguistic to acoustic feature map-
ping. The BLSTM neural network has two forward-backward
recurrent layers topped with one full-connected layer. For the
recurrent layers, there are 512 forward neurons and 512 back-
ward neurons. The final full-connected layer has 127 neurons.

The input features are 651 dimensional. They are 647-dim
full-context label features plus 4-dim frame-level features. The
output features are 127 dimensional acoustic features, includ-
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Figure 2: Mean Opinion Scores of overall impression, our sys-
tem is represented with “O”.

ing 40-dim Mel-generalized Cepstral (MGC), 1-dim log-f0(lf0),
plus 1-dim band aperiodicity coefficients (BAP) as static fea-
tures, and their corresponding delta and accelerate features, plus
1-dim voice/unvoice (vuv) features. Before training, both in-
put and output features are normalized. The input features are
min-max normalized, while the output features are global mean-
variance normalized.

For training, we also use the Adam as the optimizer and set
the initial learning rate with 0.0001 and set the batch size with
20.

2.6. Waveform synthesis

Once the acoustic features are predicted by the BLSTM acoustic
models, we first denormalize the acoustic features with global
mean and variance. We then use maximum likelihood parame-
ter generation (MLPG) algorithm to get the static features. Af-
ter that, we apply post-filtering on the static MGC features. The
final features are taken as input to the WORLD vocoder to syn-
thesize the waveform.

3. Results
3.1. Results

This section presents the official evaluation results, which are
based on the subjective listening tests conducted by the orga-
nizer. Our system is labelled as ”O” in this year challenge.

Three kinds of listeners were participated in the listening
tests, including paid listeners who is native speakers of English,
online volunteers and speech experts.

There are 15 systems in evaluation test including 4 bench-
mark baselines, 10 participating teams and natural speech. Sys-
tem A is natural speech. System B is the Festival benchmark,
which is a standard unit-selection system. System C is the
HMM benchmark built using the HTS toolkit [22]. System D is
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Figure 3: Mean Opinion Scores for naturalness evaluation, our
system is represented with “O”.

the first DNN benchmark built using the HTS toolkit. System
E is the second DNN benchmark built using the HTS toolkit,
which employs trajectory training [23].

Four types of evaluation were conducted in this year, in-
cluding Mean opinion scores for paragraphs (MOSpara) , MOS
for sentences (MOSsentence), Similarity with original speaker
(SIM) and Semantically unpredictable sentences (SUS). MO-
Spara eveluates the synthetic paragraph on the aspects of the
overall impression, pleasantness, Speech Pauses, Stress, Intona-
tion, Emotion and Listening effort, with a score scale of 1 to 60,
the higher the better. MOSsentence evaluates the naturalness of
the synthetic sentence with a score scale of 1 to 5. SIM repre-
sents how similar the synthetic voice is sounded to the reference
samples on a scale from 1 to 5. SUS represents the intelligibil-
ity of the synthetic speech, and it is evaluated with word error
rate (WER).

Overall, our system does not perform well. As shown in
Figure 2, 3, 4, according to MOSpara, MOSsentence and SIM,
our system just slightly outperforms the HMM based text-to-
speech baseline system, while worse than the “D” and “E” DNN
baselines. According to the SUS results, as shown in Figure 5,
the WER our system is about 36%, which is around the average
of all the systems. We are discussing the possible reasons in the
next section.

4. Discussion & Conclusion
From Section 3.1, we can see our submitted results (“O”) are
even worse than the baseline systems of “D” and “E” for all the
evaluations. In this section, we are discussing some reasons that
probably affect our final results.

To build a TTS system from scratch, it mainly consists of
four parts, data pre-processing for segmentation, alignment and
cleaning, front-end text analysis for the full-context feature ex-
traction, the back-end models (duration and acoustic modeling),



●●●

●

●●

●

●

●

●

●

●●

●● ●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●

●●●●●●● ●●●●●●●● ●

●●●●●●●●●●● ●●

●●●

●●●●●

● ●

●●●

251 251 251 251 251 251 251 251 251 251 251 251 251 251 251n

A K I J L M B D E F G C O H N

1
2

3
4

5

Mean Opinion Scores (similarity to original speaker) − All listeners

System

S
co

re

Figure 4: Mean Opinion Scores for similarity to original speak-
ers, our system is represented with “O”.

as well as the vocoder responsible for the final speech gener-
ation. To train a TTS system with decent quality voice, it is
indispensable to make comprehensive efforts on these four as-
pects. The failure for any of these four parts will lead to a under-
qualified TTS system. We are discussing problems of our sys-
tem for these parts as below.

4.1. Data pre-processing

In this year Challenge, the organizer provided data that con-
tains longer audio segments and corresponding transcriptions.
To prepare data for the duration and acoustic model training,
participants need to cut the audio segments into utterances and
clean the dataset. In our implementation, we directly used the
organizer provided time-boundary and our ASR recognizer to
cut the audio segments. No extra boundary detection and data
cleaning process was conducted. However, there are some over-
expressive audio files, which appears abnormal in terms of pitch
level fluctuation. This may have bad effect on the model train-
ing, yielding worse performance.

4.2. Back-end model training

For the back-end model training, we have not conducted exten-
sive experiments on the challenge data, except for tuning the
learning rate. For instance, we have not even changed the DNN
topology architecture, due to limited time available.2

4.3. Initial Attempt Using WaveNet as Vocoder

After evaluation result submission, we also tried to learn a
WaveNet using the learned acoustic features as input and the

2Previously, we spent too much time on end-to-end attention based
TTS system training using TACOTRON1. However, we found our end-
to-end models cannot generalize to the unseen evaluation data, partic-
ularly it failed to synthesize speech for those longer sentences. Conse-
quently, we gave it up and resorted the Merlin to train our TTS system
only in the final remaining week.
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Figure 5: Word Error Rate for intelligibility Evaluation, “O” is
our system.

raw wave sample as output. As a result, the WaveNet here ac-
tually acts as a learned vocoder. On the third-party data, We
observed obvious quality improvement compared the the case
of using the conventional vocoder for waveform synthesis. In
future, we are planning to conduct the WaveNet experiments on
this year challenge data.

4.4. Conclusion

In this paper, we report our TL-NTU’s text-to-speech system
performance with the statistical parametric speech synthesis
based DNN method in the Blizzard Challenge 2018. Due to
various reasons, our system performance on the evaluation data
is not good as that of the corresponding DNN baseline system
released by the organizer, we also give an appropriate analysis
and due discussion.
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