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Abstract
This paper introduces a text-to-speech (TTS) system developed
at LINGBAN research for the Blizzard Challenge 2019. The
task for this year is to build a voice from about eight hours of
highly expressive Mandarin speech data. We proposed a neural
vocoder based parametric system that modeling speech wave-
forms for this task. Firstly, A lightly-supervised speech recog-
nition approach was adopted to select the clean speech data with
accurate text. Moreover, a hybrid deep neural network (DNN)
with long-short term memory (LSTM) built on multi-speaker
speech data was applied for acoustic modeling and duration
modeling. Finally, a WaveNet-based neural vocoder was used
to generate speech waveforms from acoustic feature instead of
the conventional vocoder. Subjective evaluation results show
that our system performs good in all evaluation criteria.
Index Terms: speech synthesis, Blizzard Challenge, DNN-
LSTM, WaveNet

1. Introduction
Speech synthesis has made great progress in the past two
decades. The quality of synthesized speech has been signifi-
cantly improved. Accordingly, the demand for offering high-
quality synthetic speech with various speaking styles and var-
ious languages is increasing. However, due to the differences
in corpus, tasks and listening test, it becomes more difficult to
compare different synthetic systems. Therefore, Blizzard Chal-
lenge [1] was organized annually since 2005 to better under-
stand and compare research techniques in constructing corpus-
based speech synthesis systems with the same data. A series of
tasks, such as English, Mandarin, some Indian languages, En-
glish audiobooks, have helped us measure progress in speech
synthesis technology.

Early challenges tended to have a relatively small amount
of speech data recorded with less noise under the same record-
ing conditions. At that time unit selection based waveform con-
catenation approaches [2, 3] and hidden Markov model (HMM)
based speech synthesis approaches [4, 5, 6] became the most
popular methods. The biggest drawback for waveform concate-
nation approaches is the demand of large speech corpus with
fine labeling and expert fine-tuning. HMM-based speech syn-
thesis systems have advantages on flexibility and small foot-
print, but the speech quality of these systems is limited by accu-
racy of acoustic modeling and the traditional vocoder [6]. After-
wards in the Blizzard Challenge 2013 [7, 8], approximately 300
hours of unsegmented audio were provided as training data. The
corpus of this challenge had the following characteristics, such
as inconsistency between speech and text, and great change of
voice expression. In the Blizzard Challenge 2016 [9], 2017 [10]
and 2018 [11], similar highly expressive speech data from pro-
fessionally produced English childrens audiobooks were also
provided as training data. Meanwhile, the methods based on
big data have achieved great success in various research field-
s, such as speech recognition [12] and speech synthesis [13].

The increase of speech corpus not only significantly improved
the quality of synthesized speech but also made speech synthe-
sis with various speaking styles become possible. Recent suc-
cesses of deep learning methods for TTS further lead to high-
fidelity speech synthesis. A variety of deep neural networks
models, such as DNN-BLSTM [14] and LSTM-RNN [15], have
achieved greater performance in acoustic modeling and duration
modeling. In addition, the neural network based vocoders, such
as WaveNet [16], SampleRNN [17], Parallel WaveNet [18] and
ClariNet [19], play a very important role in recent advances of
speech synthesis.

A neural vocoder based statistical parametric system has
been submitted for the Blizzard Challenge 2019. Our system
have three main components: data selection and text analysis, a-
coustic features prediction, and speech waveform generation. In
the data selection and text analysis, the clean speech data with
accurate text is first selected according to the word error rate
(WER) of recognition results. Then linguistic contextual fea-
tures, such as phonemes(initials and finals for Mandarin), tones,
syllables, word segmentation, and parts-of-speech, is estimated
from the input text. In the acoustic features prediction compo-
nent, duration and acoustic models based on DNN-LSTM suc-
cessively predict duration and acoustic features with the corre-
sponding linguistic contextual features. In the process of speech
waveform generation, a speech waveform is generated from the
acoustic features by using WaveNet-based neural vocoder.

The rest of this paper is organized as follows. Section 2
introduces the details of the single Mandarin task in Blizzard
2019. An overview of our system will be discussed thoroughly
in Section 3. The results of the evaluation are further described
in Section 4. Finally, the conclusion is drawn in Section 5.

2. The Mandarin Task in Blizzard 2019
In Blizzard Challenge 2019, the evaluation only consists of one
task as follows:

• MH1 - About 8 hours of speech data from an internet
talk show by a well-known Chinese character will be re-
leased. All data are from a single speaker. The task is to
build a voice from this data that is suitable for expressive
TTS.

In the following sections we will introduce the whole process
of constructing the speech synthesis system for MH1.

3. Overview of the System
The overview of the text-to-speech (TTS) system, which con-
sists of both training and synthesis phases, is shown in Fig-
ure 1. At training stage, the clean speech with accurate text
is firstly chosen by means of lightly-supervised speech recog-
nition and text alignment. Afterwards the acoustic features in-
cluding spectral envelope and fundamental frequency (F0) are
extracted correspondingly and the contextual labels including
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Figure 1: The flowchart of LINGBAN TTS system.

phone-related and word-related features are obtained through
the modules of text analysis, such as text normalization, word
segmentation, part-of-speech tagging, phonetic disambiguation
and others. Based on these acoustic features and the contextu-
al labels, the corresponding HMMs are estimated in the maxi-
mum likelihood (ML) sense [4] and thus obtained frame-level
alignments between speech and text. Thirdly, both the dura-
tion model and acoustic model represented by the same DNN-
LSTM framework are first initialized with multi-speaker speech
data and further optimized using speech of target speaker. At
last, a WaveNet neural vocoder conditioned on the ground-truth
mel-spectrograms plus F0 is achieved under the alignment of
speech waveform and acoustic features.

At synthesis stage, the contextual label sequence of synthe-
sized text is first predicted by the front-end text analysis. Then
phone durations and acoustic features corresponding to this la-
bel sequence are successively predicted by previously trained
DNN-LSTM models. Finally the WaveNet neural vocoder is
used to generate speech waveforms sample by sample condi-
tioning on the predicted mel-spectrograms plus F0. The follow-
ing subsections will introduce the whole system in detail.

3.1. Data Selection and Text Analysis

Through detailed analysis about the speech data of MH1 task, it
can be found that this corpus has the following characteristics:
(1) it contains a total of 480 mp3 files, each containing about
one minute of speech; (2) all the speech data isn’t transcribed;
(3) the average gain varies from one speech segment to anoth-
er due to different recording environment; (4) various voices
including laughter and complex emotional expressions exist in
this internet talk show. Hence it’s necessary to first choose clean
speech data with quite accurate transcription from raw corpus in
order to construct the subsequent speech synthesis system.

Referring to [20, 21], the basic process of speech data se-
lection is designed as follows. The untranscribed speech firstly
roughly hand-annotated. The related models of speech recog-
nition are trained based on the annotated speech. Thus if the
recognition result is not identical with raw transcription, it’s

likely that the transcription has the errors, such as insertion er-
ror, deletion error or substitution error. Afterwards, the word
error rate (WER) for each utterance is calculated through tex-
t alignment and the corresponding clean speech with accurate
transcription are also obtained.

Different from previous challenges, this challenge includes
a variety of synthesized texts, such as story, encyclopedias, po-
etry, English mixed reading, rhotic accent and others. Hence
the text analysis with higher accuracy and robustness becomes
particularly important. The whole process of text analysis con-
sists of several steps. The raw texts are first converted to pure
Chinese characters through the fine-designed rules. Afterwards
word segmentation of the sentence, Part-of-Speeches (POS) of
this word sequence and prosodic hierarchy are successively pre-
dicted by the pre-trained neural network models. In the module
of grapheme to phoneme (G2P), tonal syllable sequence cor-
responding to the word sequence is obtained with the specific
multi-pronunciation models and pronunciation dictionary. Fi-
nally, a series of contextual labels, such as positional features,
numerical features and category features, are extracted from the
above phonetic and linguistic information.

3.2. DNN-LSTM based Acoustic Modeling

The weakness of conventional HMM-based acoustic modeling
is the accuracy of acoustic modeling, which generates the over-
smoothed spectral envelopes and finally leads to the muffled
voice quality of the synthetic speech. In contrast, DNN-LSTM
or LSTM-RNN, which could model temporal sequences and
their long-term dependencies, has been successfully applied to
acoustic modeling and proven the superiority of producing more
natural synthetic speech.

This work adopted same hybrid structure of the DNN-
LSTM for both acoustic modeling and duration modeling. The
basic DNN-LSTM, which is configured with two feed-forward
layers, one unidirectional LSTM layer and one feed-forward
output layer, is firstly estimated from hundreds of hours of
multi-speaker speech data. Based on the pre-trained basic
DNN-LSTM without output layer, the final DNN-LSTM added
with one unidirectional LSTM layer and one feed-forward out-
put layer is further trained using the speech of target speaker.
For the duration modeling, both the feed-forward layer and uni-
directional LSTM layer consist of 64 nodes. Previous extracted
linguistic features are adopted as input feature and phone dura-
tions are used as final output. While for the the acoustic model-
ing, both the feed-forward layer and unidirectional LSTM layer
contains 256 nodes. Except for linguistic features, duration fea-
tures are also employed for input. In addition, all the above
networks are trained using Stochastic Gradient Descent (SGD)
algorithm. The training process will stop if no new best error on
the validation set could be achieved within the last 30 epochs.

3.3. WaveNet-based Neural Vocoder

Due to lack of phase prediction and inherent assumption of
vocoder, conventional vocoders like STRAIGHT [22] face great
difficulties in producing high fidelity speech. To address this
problem, this work adopts WaveNet generative model for wave-
form generation instead.

WaveNet is a fully probabilistic and autoregressive genera-
tive model that can generate waveforms directly. Given a wave-
form x= {x1, x2, · · · ,xT }, the joint probability of all these
samples is factorised as a product of conditional probabilities



where −1 < xt < 1 and µ = 255. This non-linear quantization produces a significantly better
reconstruction than a simple linear quantization scheme. Especially for speech, we found that the
reconstructed signal after quantization sounded very similar to the original.

2.3 GATED ACTIVATION UNITS

We use the same gated activation unit as used in the gated PixelCNN (van den Oord et al., 2016b):

z = tanh (Wf,k ∗ x)� σ (Wg,k ∗ x) , (2)

where ∗ denotes a convolution operator, � denotes an element-wise multiplication operator, σ(·) is
a sigmoid function, k is the layer index, f and g denote filter and gate, respectively, and W is a
learnable convolution filter. In our initial experiments, we observed that this non-linearity worked
significantly better than the rectified linear activation function (Nair & Hinton, 2010) for modeling
audio signals.

2.4 RESIDUAL AND SKIP CONNECTIONS
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Figure 4: Overview of the residual block and the entire architecture.

Both residual (He et al., 2015) and parameterised skip connections are used throughout the network,
to speed up convergence and enable training of much deeper models. In Fig. 4 we show a residual
block of our model, which is stacked many times in the network.

2.5 CONDITIONAL WAVENETS

Given an additional input h, WaveNets can model the conditional distribution p (x | h) of the audio
given this input. Eq. (1) now becomes

p (x | h) =

T∏

t=1

p (xt | x1, . . . , xt−1,h) . (3)

By conditioning the model on other input variables, we can guide WaveNet’s generation to produce
audio with the required characteristics. For example, in a multi-speaker setting we can choose the
speaker by feeding the speaker identity to the model as an extra input. Similarly, for TTS we need
to feed information about the text as an extra input.

We condition the model on other inputs in two different ways: global conditioning and local condi-
tioning. Global conditioning is characterised by a single latent representation h that influences the
output distribution across all timesteps, e.g. a speaker embedding in a TTS model. The activation
function from Eq. (2) now becomes:

z = tanh
(
Wf,k ∗ x + V T

f,kh
)
� σ

(
Wg,k ∗ x + V T

g,kh
)
.

4

Figure 2: Overview of the WaveNet architecture [16].

as follows:

p(x|c) =
T∏

t=1

p(xt|x<t, c; θ) (1)

where each audio sample xt is conditioned on the samples at
all previous timesteps. c is conditional inputs, here both mel-
spectrograms and F0 are adopted as local condition.

As shown in Figure 2, p(xt|x<t, c; θ) in equation (1) is
characterized by a stack of convolutional layers containing gat-
ed activation unit as the output of each layer:

z = tanh(Wf,k∗x+Vf,k∗c)�σ(Wg,k∗x+Vg,k∗c) (2)

where ∗ denotes a convolution operator, � denotes an element-
wise multiplication operator, σ(·) is a sigmoid function, k is the
layer index, f and g denote filter and gate, respectively, Wf,k

and Wg,k are learnable convolution filters for waveform inputs,
Vf,k and Vg,k are learnable convolution filters for conditional
inputs. In addition, both residual and skip connections are u-
tilized to further speed up convergence and enable training of
much deeper models.

Finally, our WaveNet model consists of 30 layers, grouped
into 3 dilated residual block stacks of 10 layers. For every s-
tack, the dilation rate increases by a factor of 3 in every layer,
and no dilation for the first layer. The number of hidden units
both in the gating layers and in the residual connection is 512,
and the number of hidden units is 256 for the skip connection.
The network was trained for 1,000,000 steps with the ADAM
optimiser [23] with a mini-batch size of 2 audio clips, each con-
taining 6139 timesteps (roughly 383ms).

4. Results and Discussion
This section will discuss the official evaluation results of our
system in Blizzard Challenge 2019 in detail. 26 systems, in-
cluding 2 benchmarks and 24 submitted systems were evaluat-
ed. Our system is identified as S, whereas system A and B are
benchmark systems. System A is the natural speech and system
B is the Merlin Benchmark system.

4.1. Similarity test

Figure 3 shows the boxplot results of similarity scores of all
systems for MH1. It can be seen that our system achieves the
second best similarity to original speaker for MH1 except for
system M. Moreover the results of Wilcoxons signed rank tests
further show that the difference between system S and system
M on similarity is not significant for MH1. Besides, system I
and system W, which performed good for MOS on naturalness,
instead achieve relatively poor performance.
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Figure 3: Results of MOS on speaker similarity for MH1.

4.2. Naturalness test

●●●

●

●●●●●●● ●●

●●●

●●●●●●●●

●

●● ●●

●

●●●●●●●●●●●●●●

●●

●●● ●●●●●●●●●●

●

●

●

●

●

●●●

●

●●●

●

● ●●●●●●●●●●●●●

●

●●●●

●

●●●●

●

●

●

●●●

● ●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●●

●

●●

●

●●

●●

●●●●●●

●

●●

●

●●●●●●●●●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●●●●

●●●

●●

●

●●●●●●●●●

●●●

●

●●

●

●

●

●

●●●●●

●●

●●●●●●●●●

●

●●

●

●●●●●●

●

●●●●●

●

●●●●●●

●

●

●●●

●

●●●●●●●●●●

●

●●●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●

●

●●●●●●●

●

●●

●

●●●●

●

●●●

●

●●●●

●

●●●

●

●●●●●●●●

●

●●

●

●

●●●

●●●

●

●

●

●●

●●●●●

●

●●●●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●●●●●

●

●

●

●

●●●●

●●

●●●●

●

●●●●●

●●●●

722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722n

A M I W S Y Z E C G T H D V J N X K Q F O R B U L P

1
2

3
4

5

Mean Opinion Scores (All Listeners)

System

S
co

re

Figure 4: Results of MOS on naturalness of sentences for MH1.

Figure 4 shows the boxplot results of MOS on naturalness
of all systems for MH1. As we can see, our system achieved
better performance (not including the natural speech system A)
on naturalness than merling benchmark system and most partic-
ipates, except for system M, I and W.

4.3. Intelligibility test

Figure 5 and Figure 6 show the results of the overall Pinyin Er-
ror Rate (PER) test and Pinyin+Tone Error Rate (PTER) test of
all systems for MH1 respectively. Semantically Unpredictable
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Figure 5: Results of Pinyin Error Rate (PER) for MH1.

Sentences (SUS) were designed to test the intelligibility of the
synthetic speech. The results show that our system achieves the
second highest intelligibility among all the systems for MH1
except for system N.

5. Conclusions
This paper introduces the development of the LINGBAN speech
synthesis system for Blizzard Challenge 2019. We built a
neural vocoder based statistical parametric system. A lightly-
supervised speech recognition approach was utilized to remove
poor quality speech data with noise text. The hybrid DNN-
LSTM models built on mult-speaker speech data were used for
acoustic modeling and duration modeling. Due to lack of phase
prediction and inherent assumptions of traditional vocoder, a
WaveNet based neural vocoder was adopted to generate speech
waveforms from acoustic features. The official evaluation re-
sults of Blizzard Challenge 2019 further reveal the superiority
of our system. Finally our system achieves overall good perfor-
mance compared to other systems according to all evaluation
criteria.
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