
The STC text-to-speech system for Blizzard Challenge 2019

Roman Korostik1, Artem Chirkovskiy1, Alexey Svischev1, Ilya Kalinovskiy1, Andrey Talanov1

1STC-innovations Ltd., St.Petersburg, Russia
{korostik, chirkovskiy, svishchev, kalinovskiy, andre}@speechpro.com

Abstract

The paper presents text-to-speech system developed at STC

for the Blizzard Challenge 2019. This year, the task is to build

a TTS system for Mandarin Chinese using found data suitable

for expressive TTS. Provided corpus contains 8 hours of speech

by a native speaker with text annotations.

We describe a neural speech synthesis system for Mandarin

Chinese built without any significant prior knowledge about the

language. Input text is converted to a sequence of phones using

publicly available tools. Then, a sequence of phones is turned

into a spectrogram by a Tacotron-based neural network. Finally,

the spectrogram is converted into a waveform using a LPCNet-

based neural network. Our system is based on learning deep

representations and does not explicitly use or predict such fea-

tures as pitch, duration of every phone, etc.

We also discuss our system’s performance in listening tests

conducted by organizers of the challenge.

Index Terms: speech synthesis, deep learning, text-to-speech

1. Introduction

The Blizzard Challenge is aimed at comparing and under-

standing different approaches to building corpus-based text-to-

speech systems. The basic task is to build a TTS system in

limited time using speech database provided by organizers of

the challenge. Participants use their systems to synthesize texts

from test set; these audio samples are used to assess systems’

perfomance through listening tests and objective metrics.

Traditionally, TTS systems solve their task by dividing pro-

cess into two parts. First, input text is normalized and trans-

formed into linguisic features of different levels: phone-level,

syllable-level, word-level and so on. Then, these linguistic fea-

tures are transformed into waveform by a heavy engineered

module. Usually, extracting linguistic features and building a

backend requires a lot of expert knowledge in linguistics. The

task may also require time-consuming labeling of speech cor-

pora by hand [1].

Due to recent developments in field of deep learning, a new

appealing approach to building TTS backend has emerged. It

involves training one or two deep neural networks and requires

lesser expert knowledge and expert-labeled data. Resulting sys-

tems are able to produce intelligible and natural speech while

being trained only on pairs (text, waveform) with no extra la-

beling.

Usually, these backends consist of two blocks: first block

is a deep neural network transforming input sequence of

graphemes or phonemes into sequence of acoustic features.

Examples include Tacotron [2, 3], Char2Wav [4], DeepVoice

[5, 6, 7], VoiceLoop [8], DC-TTS [9]. Second block is a

vocoder generating a waveform using features from previous

stage. A vocoder may be an iterative algorithm such as Griffin-

Lim [10] algorithm, an algorithm built on expert knowledge

about speech signal (e.g. STRAIGHT [11], WORLD [12]), or a

deep neural network such as WaveNet [13, 3], WaveRNN [14],

FFTNet [15], LPCNet [16], ClariNet [17], WaveGlow [18].

We stick to this new appealing approach. First, input text

gets normalized and translated into a sequence of phones. Then,

a sequence of phones is converted to a mel-filterbank spectro-

gram by a Tacotron-based deep neural network. Finally, an

LPCNet-like neural vocoder converts mel-filterbank spectro-

gram into a waveform.

Following sections describe data, data preprocessing and

each step of the pipeline, as well as discussion of evaluation

results.

2. Data and Task

The challenge focuses on found data. The task is to build voice

of a single Mandarin Chinese speaker using 8 hours of their

speech gathered from an internet talk show. Dataset consists of

1 minute chunks of speech with a corresponding text for each

chunk. Provided records have one channel (with a couple of

exceptions), 24 kHz sampling rate, 16 bit depth, and are lossily

compressed (LAME MP3, 40 kbit/s).

Provided records vary in quality: some of them are rather

clean, others have clipping and contain background noise.

While rules of the challenge explicitly allow usage of extra

speech not from target speaker, we did not use any.

3. Our approach

The section describes our approach to building a TTS system

for the challenge. It must be noted that nobody on the team has

any proficiency in Mandarin Chinese.

3.1. Text preprocessing

Chinese characters (also called Hanzi) sometimes can be read

in a completely different ways depending on the context. The

aim of text preprocessing is to build a pipeline converting input

Hanzi text into a sequence which would be more representative

of an utterance’s pronounciation. The idea behind this approach

is that having a closer-to-pronounciation text representation as

an input to an end-to-end speech synthesizer should result in

easier training of the synthesizer and require less data.

A typical Mandarin Chinese text is a sequence of Hanzi

without spaces. As a first step, we split the text into words using

jieba [19] Python package, which takes the most probable word

segmentation based on word usage statistics. The aim of this

step is to account for possible ambiguity of word boundaries.

Pinyin is an alphabetic system for Mandarin Chinese repre-

sentative of its phonetics. We wish for closer-to-pronounciation

representation of text, so every word is transcribed into Pinyin

using pypinyin [20] Python package.

Basic unit of Pinyin is syllable, and there are over 1000

possible syllables. With an aim to bring down input characters

vocabulary size and to get closer to pronounciation we convert



pinyin sequences into phones using a pre-trained Mandarin Chi-

nese pinyin-to-phones Phonetisaurus model from the Montreal

Forced Aligner [21]. This also results in vowels with different

tones being considered as completely different input characters.

Texts contain a small number of English words. As learning

representations for English phonemes from such data seems un-

feasible, we convert English words to phonemes using g2p en

Python package and convert those to Mandarin Chinese phones.

Mapping from English phonemes to Mandarin Chinese phones

is hand-designed and is based on phoneme-IPA tables from

Wikipedia.

In contrast to training set, test set contains a number of non-

Hanzi and non-punctuation tokens such as characters denoting

longitude and latitude. Test texts also contain tokens signifying

time, date and various ranges. Attempts to find tools for Chinese

text normalization have not succeeded, so a number of simple

normalization rules has been written. The rules are based on

various ’learning Mandarin Chinese: saying X correctly’ arti-

cles from the web and are implemented as regular expressions.

We also convert all numbers to Hanzi using a hand-written rule-

based algorithm.

To sum up, text preprocessing pipeline is as follows:

1. Text is normalized by hand-written rules to have only

Hanzi and punctuation.

2. Normalized text is split into tokens.

3. Each token is converted into pinyin.

4. Pinyin is converted into phones using pre-trained Man-

darin Chinese pinyin-to-phones G2P model.

5. English words are converted into phones using a pre-

trained G2P model for English and hand-designed map-

ping from English phonemes to Mandarin Chinese

phones.

6. Punctuation from the original text is inserted into corre-

sponding places of the phones sequence.

3.2. Alignment

An essential component of an end-to-end speech synthesizer is

an attention module. It learns to align input character sequence

with output spectrogram frame sequence. It is necessary to have

text exactly correspond to speech signal: teaching the model

to align sequences can be much harder if there are no correct

alignments for some training examples.

Duration of examples is also important. When training a

phones-to-spectrogam model on a NVIDIA GTX 1080Ti GPU,

using whole one minute chunks of speech allows us to use only

extremely small minibatches.

We address both of these concerns by using Montreal

Forced Aligner [21]. It is a forced alignment system build on

top of Kaldi speech recognition toolkit. The project offers a

pre-trained Mandarin Chinese acoustic model, as well as a pre-

trained G2P model for pinyin to phones conversion.

3.2.1. Pronounciation vocabulary

Montreal Forced Aligner requires a pronounciation vocabulary.

Both pypinyin and Phonetisaurus allow for retrieving not only

the most probable transcription, but also top-n most probable

transcriptions. We use this to build the vocabulary. Top-k and

top-j predictions from pypinyin and Phonetisaurus are being

taken, resulting in at most k × j pronounciations for a given

token. We use k = j = 4 resulting in 100 thousand vocabulary

entries overall.

3.2.2. Initial experiments

The basic idea is that non-aligning segments should be consid-

ered unfitting the task and thrown out. Also, word-level and

phone-level alignments can be used to split examples into lesser

chunks. Of course, throwing out whole minutes of training data

because of a smaller non-alignable segment is wasteful: run-

ning Montreal Forced Aligner with default settings results in

only 5 of 8 hours being aligned. To counter this, we run Mon-

treal Forced Aligner with a very wide beam (retry beam =

450) to get a much rougher alignment. Then we split roughly

aligned examples by break-inducing punctuation such as com-

mas, colons, semicolons and full stops. Finally, we run forced

alignment on split examples with default, resulting in 6 hours of

finely aligned speech.

3.2.3. Correcting annotations using automatic speech recogni-

tion

While hand-checking non-aligned chunks we noticed a lot of

examples with completely non-matching texts or even without

corresponding texts. There also were examples with audio and

text differing only in interjections and short function words. We

used an online ASR system from Wit.ai, Inc. [22] to deal with

these samples. By combining original texts and texts received

from service we obtained ASR-corrected texts in several ver-

sions, based on different suggestions of the ASR system. Mon-

treal Forced Aligner was applied to all versions of combined

annotations and for each data sample the version with highest

alignment score was selected. A drawback of this approach is

that for such homophonic language as Mandarin Chinese, result

of automatic recognition can be quite meaningless in semantics.

This procedure allowed us to increase duration of aligned

subset by 35 minutes.

3.2.4. Correcting segmentation

Phone sequences for audio samples were obtained from Mon-

treal Forced Aligner segmentations. Hand-checking of segmen-

tations revealed that the aligner denoted a lot of plosives as pairs

of pause and a plosive, counting the ’hold’ subsegment of the

plosive as a pause. Correcting this slip-up resulted in more sta-

ble training of the synthesizer.

3.3. Synthesizer

We have chosen Tacotron 2 [3] as a starting point for our system.

First, it has been proven to be suitable as a base for making TTS

systems for different languages (e.g. English [3], Japanese [23]

and even multi-language ones (English, Spanish and Chinese in

[24]). Second, it is flexible: there is a lot of research into various

add-ons and modifications to this architecture, aimed at improv-

ing overall quality and/or making some kind of prosody control

feasible [25, 24, 26], improving stability [27], semi-supervised

learning, transfer learning and efficient use of data [28, 29], us-

ing different architectures for submodules [30], etc.

It is augmented with a GST [25] module for unsupervised

prosody modeling. For more stable decoding we employ For-

ward Attention [27]. In addition to base Tacotron 2 loss we use

guided attention loss [9] for faster attention convergence and

MS-SSIM [31] loss to make mel-spectrograms less blurry.

3.3.1. Prosody

GST module extracts global prosodic features and does not take

into account content of an utterance. However, a person ex-



Figure 1: Overview of our system

M I W S Y Z E C G T H D V J N X K Q F O R B U L P

0
2

0
4

0
6

0
8

0
1

0
0

134 133 134 134 134 136 134 134 135 136 134 136 132 131 133 135 129 134 133 133 133 135 130 122 5n

Pinyin (with tone) Error Rate (Paid Listeners)

System

W
E

R
 (

%
)

Figure 2: Pinyin error rates (with tone)

presses meaning of an utterance, among other things, by di-

viding their speech into chunks. Speech chunking and other

prosody components are crucial for synthesized speech to be

perceived as natural.

We deem it unfeasible to explicitly model prosody (e.g.

correctly specify prosodic breaks) without labeled corpora and

competence in Mandarin Chinese. Thus, we try to model lo-

cal prosodic features implicitly by using acoustic features and

relevant information from pre-trained models.

Punctuation is a predictor of prosodic breaks. A break’s

depth strongly correlates with pause duration (if present). We

model breaks as pauses using auxiliary phones representing dif-

ferent pause durations. Every punctuation token is replaced

by a sequence of pause-denoting phones summing to duration

of silence behind that punctuation symbol. At inference time,

we assume every punctuation token corresponds to a pause of

constant duration, with different durations for diffent tokens.

The punctuation tokens’ durations are medians of correspond-

ing pauses in the train set. This is the only place in whole system

where we explicitly use anything related to phone duration.

Such linguistic phenomena as word compounds, lexical cat-

egories, etc. may affect prosody in subtle ways. To account for

M I W S Y Z E C G T H D V J N X K Q F O R B U L P

0
2

0
4

0
6

0
8

0
1

0
0

134 133 134 134 134 136 134 134 135 136 134 136 133 131 133 135 132 134 134 133 133 135 130 123 20n

Pinyin (without tone) Error Rate (Paid Listeners)

System

W
E

R
 (

%
)

Figure 3: Pinyin error rates (without tone)

this in an implicit way, we use context-dependent text embed-

dings, namely output of a pre-trained Chinese BERT [32, 33]

aligned with phone sequence. For silence phones we use vec-

tors of corresponding punctuation tokens. After adding these

vectors to encoder outputs we observed better pronounciation

(as far as non-native speakers can judge) and better overall sta-

bility.

The challenge focuses on emotional speech synthesis.

Emotions are expressed in speech through prosody, so we aim to

model prosody well, hoping that the network will catch speak-

ing style presented in provided recordings, which is quite emo-

tional.

3.4. Vocoder

We use LPCNet [16] modified to take 80-band mel-filterbank

spectrograms as input instead of MFCCs. It is a nice companion

to Tacotron 2 in both quality and speed, allowing for real-time

synthesis. It is also not the first published usage of LPCNet in

text-to-speech systems [34].



●●●

●

●●●●●●● ●●

●●●

●●●●●●●●

●

●● ●●

●

●●●●●●●●●●●●●●

●●

●●● ●●●●●●●●●●

●

●

●

●

●

●●●

●

●●●

●

● ●●●●●●●●●●●●●

●

●●●●

●

●●●●

●

●

●

●●●

● ●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●●

●

●●

●

●●

●●

●●●●●●

●

●●

●

●●●●●●●●●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●●●●

●●●

●●

●

●●●●●●●●●

●●●

●

●●

●

●

●

●

●●●●●

●●

●●●●●●●●●

●

●●

●

●●●●●●

●

●●●●●

●

●●●●●●

●

●

●●●

●

●●●●●●●●●●

●

●●●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●

●

●●●●●●●

●

●●

●

●●●●

●

●●●

●

●●●●

●

●●●

●

●●●●●●●●

●

●●

●

●

●●●

●●●

●

●

●

●●

●●●●●

●

●●●●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●●●●●

●

●

●

●

●●●●

●●

●●●●

●

●●●●●

●●●●

722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722 722n

A M I W S Y Z E C G T H D V J N X K Q F O R B U L P

1
2

3
4

5

Mean Opinion Scores (All Listeners)

System

S
c
o

re

Figure 4: Mean opininon scoring

3.5. Parameters and training

Initial experiments to train LPCNet on original 24 kHz record-

ings have given unsatisfying results, the corpus has been down-

sampled to 16 kHz. Waveforms are converted to mel-filterbank

spectrograms using librosa [35]. We use 80 mel-filterbanks, 50

ms windows and hops of 20 ms.

Tacotron 2 and GST module parameters and hyperparam-

eters follow original papers [3, 25]. Context-dependent word

embeddings from pre-trained BERT are concatented with out-

puts of Tacotron 2 decoder.

Synthesizer was trained on a machine with a single

NVIDIA GTX 1080Ti GPU using batches of 16 samples. Sam-

ples’ durations were approximately 5 seconds or less.

The vocoder is trained using same setup on whole provided

corpora without augmentation used in LPCNet reference imple-

mentation. Despite provided database containing recordings of

different quality, we have not seen any improvements after re-

moving the most clipped and distorted examples from the pro-

vided corpora.

3.6. Overview

Overview of the system is presented in Figure 1. The steps are

as follows:

• input text is normalized using hand-written rules;

• normalized text is split into words, every word is con-

verted into pinyin, pinyin is converted into phones;

• normalized text is split into tokens, resulting sequence of

tokens is converted into a sequence of context-dependent

token embeddings using a pre-trained BERT model;

• sequence of token embeddings is aligned with phones

sequence;

• modified Tacotron 2 takes the phone sequence, a refer-

ence spectrogram and the sequence of context-dependent

token embeddings as input, than outputs a mel-filterbank

spectrogram;

●●●●●●

●●

●

● ●●

●●

●●

●

●

●●●

●

●●●

●

●●

●●

●●●

●●

●●●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●●●●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●●●●

●

●●

●

●

●

● ●●●●

●●●

●

●

●

●

●●

●●●●●

●

●

●

●●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361 361n

A M I W S Y Z E C G T H D V J N X K Q F O R B U L P

1
2

3
4

5

Similarity Scores Comparing to Original Speaker (All Listeners)

System

S
c
o

re
Figure 5: Similarity scores compared to original speaker

• modified LPCNet generates a waveform using the mel-

filterbank spectrogram.

For evaluation we chose a clean sounding sample to be used

as a reference for the GST module.

4. Results

Our system is denoted by letter K in evaluation results published

by organizers of the callenge.

Evaluation results consist of Mean Opinion Scores of all

listeners, Pinyin Error Rates with and without tone errors (paid

listeners) and Similarity Scores (all listeners). Medians for all

participating systems are presented in Figure 4, Figure 2, Fig-

ure 3 and Figure 5 respectively. Means and standard deviations

for all metrics are presented in Table 1.

5. Discussion

Results show that our system achieves lesser than average per-

fomance compared to other participants’ systems.

We partially attribute low perfomance of our system to huge

differences between train set and test set: while train set con-

tains long utterances, test set consists mostly of shorter utter-

ances. Mismatch between semantic content of train and test

sets might also have played a role due to use of BERT embed-

dings. While producing utterances of any length is expected of

any decent TTS system, we sadly did not pay enough attention

to this aspect, using mostly long texts as development set. For

submission, we ended up favoring model pronouncing long and

short texts equally well over model excelling at pronouncing

long texts but producing much less intelligible utterances for

short texts.

Overall, we consider our results to be very positive. This is

an example of how a small team can build a real-time text-to-

speech system for a completely unfamiliar language in a cou-

ple of months using publicly available tools and data-driven ap-

proach. Whole pipeline has worked well; polishing rough edges

is a matter of effort and time.



Table 1: Evaluation results

System MOS Similarity PER PTER

A 4.7 ± 0.6 4.5 ± 0.8 – –

B 2.5 ± 1.1 2.0 ± 1.0 0.21 ± 0.2 0.22 ± 0.2

C 3.8 ± 0.9 3.7 ± 1.1 0.12 ± 0.2 0.14 ± 0.2

D 3.2 ± 1.0 2.9 ± 1.2 0.16 ± 0.2 0.18 ± 0.2

E 3.9 ± 1.0 3.8 ± 1.1 0.10 ± 0.1 0.12 ± 0.1

F 2.7 ± 1.1 2.5 ± 1.1 0.17 ± 0.2 0.18 ± 0.2

G 3.7 ± 1.0 3.4 ± 1.2 0.10 ± 0.2 0.11 ± 0.2

H 3.3 ± 1.1 3.1 ± 1.1 0.12 ± 0.1 0.14 ± 0.1

I 4.3 ± 0.8 3.3 ± 1.3 0.09 ± 0.1 0.10 ± 0.1

J 3.0 ± 1.1 2.7 ± 1.2 0.19 ± 0.2 0.21 ± 0.2

K 2.8 ± 1.0 2.6 ± 1.1 0.41 ± 0.2 0.42 ± 0.2

L 1.3 ± 0.6 1.1 ± 0.5 0.44 ± 0.2 0.46 ± 0.2

M 4.5 ± 0.7 4.1 ± 1.1 0.10 ± 0.2 0.11 ± 0.2

N 3.0 ± 1.1 2.2 ± 1.1 0.09 ± 0.1 0.10 ± 0.1

O 2.7 ± 1.2 2.7 ± 1.1 0.16 ± 0.2 0.17 ± 0.2

P 1.3 ± 0.7 1.2 ± 0.7 0.88 ± 0.0 0.89 ± 0.0

Q 2.8 ± 1.1 2.9 ± 1.1 0.29 ± 0.2 0.31 ± 0.2

R 2.7 ± 1.0 2.7 ± 1.1 0.26 ± 0.2 0.28 ± 0.2

S 4.0 ± 0.9 3.9 ± 1.0 0.09 ± 0.1 0.10 ± 0.2

T 3.5 ± 1.1 3.1 ± 1.3 0.15 ± 0.2 0.16 ± 0.2

U 1.4 ± 0.7 1.3 ± 0.7 0.28 ± 0.2 0.29 ± 0.2

V 3.2 ± 1.1 3.0 ± 1.1 0.19 ± 0.2 0.20 ± 0.2

W 4.3 ± 0.9 3.3 ± 1.4 0.11 ± 0.1 0.12 ± 0.1

X 3.0 ± 1.1 2.7 ± 1.1 0.26 ± 0.2 0.28 ± 0.2

Y 4.0 ± 0.9 3.8 ± 1.2 0.16 ± 0.2 0.17 ± 0.2

Z 4.0 ± 0.8 3.9 ± 1.1 0.12 ± 0.2 0.14 ± 0.2

6. Conclusion

We have described the Speech Technology Center (STC) text-

to-speech system developed for the Blizzard Challenge 2019.

Having no proficiency in Mandarin Chinese, we have developed

a TTS system built on publicly available Chinese NLP tools and

two deep neural networks using 6.5 hours of found speech data.

Subjective evaluation conducted by organizers of the chal-

lenge has shown that our system belongs to lower half of all

systems participating in the challenge. Possible reasons for such

perfomance were discussed.

Future work may include using larger databases for pre-

training modules of the system for subsequent fine-tuning on

found data, refining text preprocessing pipeline and involve-

ment of native speakers in the development process.

7. References

[1] P. Taylor, Text-to-Speech Synthesis. Cambridge University Press,
2009.

[2] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss,
N. Jaitly, Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le,
Y. Agiomyrgiannakis, R. Clark, and R. A. Saurous, “Tacotron:
Towards end-to-end speech synthesis,” 2017. [Online]. Available:
https://arxiv.org/abs/1703.10135

[3] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang,
Z. Chen, Y. Zhang, Y. Wang, R. Skerrv-Ryan et al., “Natural
tts synthesis by conditioning wavenet on mel spectrogram pre-
dictions,” in 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 4779–
4783.

[4] J. Sotelo, S. Mehri, K. Kumar, J. F. Santos, K. Kastner,
A. C. Courville, and Y. Bengio, “Char2wav: End-to-end
speech synthesis,” in 5th International Conference on Learning

Representations, ICLR 2017, Toulon, France, April 24-26,

2017, Workshop Track Proceedings, 2017. [Online]. Available:
https://openreview.net/forum?id=B1VWyySKx

[5] S. Ö. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky,
Y. Kang, X. Li, J. Miller, A. Ng, J. Raiman et al., “Deep voice:
Real-time neural text-to-speech,” in Proceedings of the 34th Inter-

national Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 195–204.

[6] A. Gibiansky, S. Arik, G. Diamos, J. Miller, K. Peng, W. Ping,
J. Raiman, and Y. Zhou, “Deep voice 2: Multi-speaker neural text-
to-speech,” in Advances in neural information processing systems,
2017, pp. 2962–2970.

[7] W. Ping, K. Peng, A. Gibiansky, S. Ö. Arik, A. Kannan,
S. Narang, J. Raiman, and J. L. Miller, “Deep voice 3: Scaling
text-to-speech with convolutional sequence learning,” in Interna-

tional Conference on Machine Learning, 2017.

[8] Y. Taigman, L. Wolf, A. Polyak, and E. Nachmani, “Voiceloop:
Voice fitting and synthesis via a phonological loop,” in ICLR,
2017.

[9] H. Tachibana, K. Uenoyama, and S. Aihara, “Efficiently train-
able text-to-speech system based on deep convolutional networks
with guided attention,” 2018 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 4784–
4788, 2017.

[10] D. Griffin and J. Lim, “Signal estimation from modified short-
time fourier transform,” IEEE Transactions on Acoustics, Speech,

and Signal Processing, vol. 32, no. 2, pp. 236–243, 1984.

[11] H. Kawahara, “Speech representation and transformation using
adaptive interpolation of weighted spectrum: vocoder revisited,”
in 1997 IEEE International Conference on Acoustics, Speech, and

Signal Processing, vol. 2. IEEE, 1997, pp. 1303–1306.

[12] M. Morise, F. Yokomori, and K. Ozawa, “World: A vocoder-based
high-quality speech synthesis system for real-time applications,”
IEICE Transactions, vol. 99-D, pp. 1877–1884, 2016.

[13] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” in 9th ISCA Speech

Synthesis Workshop, pp. 125–125.

[14] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury,
N. Casagrande, E. Lockhart, F. Stimberg, A. Oord, S. Diele-
man, and K. Kavukcuoglu, “Efficient neural audio synthesis,”
in International Conference on Machine Learning, 2018, pp.
2415–2424.

[15] Z. Jin, A. Finkelstein, G. J. Mysore, and J. Lu, “Fftnet: A real-
time speaker-dependent neural vocoder,” in 2018 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2018, pp. 2251–2255.

[16] J.-M. Valin and J. Skoglund, “Lpcnet: Improving neural speech
synthesis through linear prediction,” in ICASSP 2019-2019 IEEE

International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP). IEEE, 2019, pp. 5891–5895.

[17] W. Ping, K. Peng, and J. Chen, “Clarinet: Parallel wave gener-
ation in end-to-end text-to-speech,” International Conference on

Machine Learning, 2019.

[18] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based
generative network for speech synthesis,” in ICASSP 2019-2019

IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2019, pp. 3617–3621.

[19] “jieba,” https://github.com/fxsjy/jieba.

[20] “pypinyin,” https://github.com/mozillazg/python-pinyin.

[21] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, and M. Son-
deregger, “Montreal forced aligner: Trainable text-speech align-
ment using kaldi.” in Interspeech, 2017, pp. 498–502.

[22] “wit.ai,” https://wit.ai/.



[23] Y. Yasuda, X. Wang, S. Takaki, and J. Yamagishi, “Investigation
of enhanced tacotron text-to-speech synthesis systems with self-
attention for pitch accent language,” in ICASSP 2019-2019 IEEE

International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP). IEEE, 2019, pp. 6905–6909.

[24] Y. Zhang, R. J. Weiss, H. Zen, Y. Wu, Z. Chen, R. Skerry-Ryan,
Y. Jia, A. Rosenberg, and B. Ramabhadran, “Learning to speak
fluently in a foreign language: Multilingual speech synthesis and
cross-language voice cloning,” arXiv preprint arXiv:1907.04448,
2019.

[25] R. Skerry-Ryan, E. Battenberg, Y. Xiao, Y. Wang, D. Stan-
ton, J. Shor, R. Weiss, R. Clark, and R. A. Saurous, “Towards
end-to-end prosody transfer for expressive speech synthesis with
tacotron,” in International Conference on Machine Learning,
2018, pp. 4700–4709.

[26] W.-N. Hsu, Y. Zhang, R. Weiss, H. Zen, Y. Wu, Y. Wang, Y. Cao,
Y. Jia, Z. Chen, J. Shen, P. Nguyen, and R. Pang, “Hierarchical
generative modeling for controllable speech synthesis,” in
International Conference on Learning Representations, 2019.
[Online]. Available: https://arxiv.org/pdf/1810.07217

[27] J.-X. Zhang, Z.-H. Ling, and L.-R. Dai, “Forward attention in
sequence-to-sequence acoustic modeling for speech synthesis,” in
2018 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2018, pp. 4789–4793.

[28] Y.-A. Chung, Y. Wang, W.-N. Hsu, Y. Zhang, and R. Skerry-
Ryan, “Semi-supervised training for improving data efficiency in
end-to-end speech synthesis,” in ICASSP 2019-2019 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2019, pp. 6940–6944.

[29] Y. Jia, Y. Zhang, R. Weiss, Q. Wang, J. Shen, F. Ren, P. Nguyen,
R. Pang, I. L. Moreno, Y. Wu et al., “Transfer learning from
speaker verification to multispeaker text-to-speech synthesis,” in
Advances in neural information processing systems, 2018, pp.
4480–4490.

[30] N. Li, S. Liu, Y. Liu, S. Zhao, M. Liu, and M. Zhou, “Neural
speech synthesis with transformer network.” AAAI, 2019.

[31] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural
similarity for image quality assessment,” in The Thrity-Seventh

Asilomar Conference on Signals, Systems & Computers, 2003,
vol. 2. IEEE, 2003, pp. 1398–1402.

[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” in Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, Volume 1 (Long and Short

Papers), 2019, pp. 4171–4186.

[33] “pytorch-pretrained-bert,” https://github.com/huggingface/pytorch-
transformers.

[34] Z. Kons, S. Shechtman, A. Sorin, C. Rabinovitz, and R. Hoory,
“High quality, lightweight and adaptable tts using lpcnet,” arXiv

preprint arXiv:1905.00590, 2019.

[35] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Batten-
berg, and O. Nieto, “librosa: Audio and music signal analysis in
python,” in Proceedings of the 14th python in science conference,
vol. 8, 2015.


