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Abstract
In this paper, we introduce the entry from the SZ-NPU team
submitted to Blizzard Challenge 2019. The goal of this year
challenge is to build a natural Mandarin Chinese speech synthe-
sis system from 8-hours single-speaker stylistic speech data in
talk shows. We will discuss the major modules of the submitted
Tacotron-Wavenet system: (1) The front-end module to analyze
the pronunciation and prosody of text; (2) The GMM-attention
based sequence-to-sequence acoustic model to predict speech
features; (3) The Wavenet based neural vocoder to reconstruct
waveforms; (4) A bandwidth extension module to up-sample
the generated speech. Evaluation results provided by the chal-
lenge organizer are also discussed.
Index Terms: speech synthesis, end-to-end, wavenet

1. Introduction
Text-to-speech (TTS) has achieved significantly improved per-
formance from hidden Markov models (HMMs) to neural net-
works (NNs). The HMM-based frameworks use the Gaussian
mixture model (GMM) to model the hidden states of speech
observations [1, 2, 3]. Considering the limitations of the HMM-
GMM framework [4], deep neural networks (DNN) are ap-
plied to acoustic modeling and produce much better perfor-
mance [4, 5, 6]. Based on the DNN framework, more novel ar-
chitectures or variants has come into the NN family to improve
the performance of synthesized speech [7, 8]. Note that the tra-
ditional frameworks need an extra module to align the linguis-
tic and acoustic representations, and the inaccurate align errors
may propagate to the latter synthesis model [9]. The attention-
based sequence-to-sequence (seq2seq) models [10, 11] have
been proposed to migrate from this problem and thus simplify
the pipeline of traditional systems. Several end-to-end speech
synthesis systems have recently shown superior performance
over the conventional structures [12, 13, 14, 15, 16, 17].

Considering the rapid development of speech synthesis
technologies, the Blizzard Challenge has been devised to tasks
with more challenging data. In this year’s challenge, the task
is to build a speech synthesis system for a well-known Chinese
talk-show speaker, Zhenyu Luo, using about 8 hours real talk-
show recordings given by the organizer. Thus the data is stylis-
tic and imperfect with inevitable background noise.

Our submission to the challenge is based on the seq2seq
acoustic model [18], where an independent Wavenet is adopted
as vocoder to reconstruct waveforms [19, 20]. The original
Tactoron2 system was firstly proposed in [18], which achieved
satisfactory performance directly from simple character- or
phoneme-level text representation for English language. But for
Chinese, G2P, word boundary and prosodic boundary directly
influences the intelligibility and naturalness of the synthesized
speech [21]. Hence we still use a text analyzer in our system.
Besides, we adopt a GMM-based attention mechanism [22] to

stabilize the generating process for long sentences and such a
system can correctly generate speech from a sequence of hun-
dreds of Chinese characters. Finally, to further improve the per-
ceptual quality of the generated speech, we apply a bandwidth
extension method to up-sample the reconstructed waveforms.

2. System Description
2.1. Data processing

The data provided by the organizer are 480 audio files at 24
kHz sampling rate and the corresponding texts. Note that the
audio and the text do not exactly match: there are many collo-
quial words in the audios, but not in the texts. So we correct
all the texts based on the audios. We use Sogou TTS front-
end to predict the needed information: normalized text, phones
and tones, word boundaries and prosodic boundaries. For the
English content occasionally embedded in the text, we obtain
the English phonemes according to the CMU dictionary. At
last, in order to facilitate subsequent training, we divide the
long sentences into several short segments. We also extract
80-dimensions Mel spectrogram at 24 kHz using a 50ms frame
length, 12.5ms frame hop and a Hann window function, which
is used to train the acoustic model and as local condition for the
WaveNet model.

2.2. Text analyser

In our system, the front-end module mainly contains text nor-
malization, Chinese word segmentation, part-of-speech (POS)
tagging, polyphone prediction and prosodic boundary predic-
tion.

For text normalization, regulation rules are applied to match
the given context. According to the matched rules, we convert
all symbolic chars into Chinese characters. As for word seg-
mentation, we train a Bi-GRU model to predict the word bound-
aries from the normalized texts. Besides, an extra user-defined
dictionary is adopted to handle some special words like named
entities. Specifically, we substitute the continuous chars from
the word dictionary with one tag, and then feed these tags and
other left chars into the model for prediction. For polyphone
prediction or G2P, both a phonetic dictionary with thousands
of words and a maximum entropy model are used. We directly
use the phonetic information from the dictionary if the word is
included in the dictionary, in which way we can easily enroll
new words if needed. Otherwise we use a maximum entropy
model to do polyphone prediction. We train a maximum en-
tropy model for each polyphone character, resulting in about
one hundred models in total. Finally for the prosodic boundary
prediction, we predict two-level boundaries using a conditional
random fields (CRF) model. The inputs of the CRF model in-
clude the current word context, POS tags and the numeric fea-
tures of the word context. Thousands of annotated sentences are
used to train the model.
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Figure 1: The architecture of our system.

2.3. Seq2seq acoustic model

In our system, we adopt the attention-based seq2seq framework
as acoustic model to predict Mel spectrogram from the text rep-
resentations. Similar to the common seq2seq models, our sys-
tem contains a text encoder, a GMM attention module and an
auto-regressive decoder. Figure 1 shows the building blocks of
our system.

For the encoder part, we adopt the CBHG network as de-
scribed in Tacotron [14], which is also proved to be effec-
tive in traditional statistical parametric speech synthesis [23].
Since the attention module is the key factor which directly af-
fects the stability of the end-to-end system, we investigate dif-
ferent attention mechanisms, including location-sensitive [24],
guided-attention [25] and GMM attention. Finally we choose
the GMM-based attention [22, 26] in our system as it shows ro-
bustness in generating particularly long sentences. In practice,
we use a GMM with 10 mixtures.

As for the decoder part, we follow the architecture of
Tacotron2 [18] to predict Mel spectrogram from the encoded
input sequence one frame at a time. The auto-regressive de-
coder contains 2 fully connected layers of 256 hidden ReLU
units as pre-net, which is essential for learning attention [18].
And a sub-network of 2 uni-directional LSTM layers with 1024
units is adopted to fuse the information from the pre-net output
and the attention context vector. Then the LSTM output is con-
catenated with the attention context to predict Mel spectrogram.
Besides, an extra post-net is also applied to predict a residual to
the prediction of foregoing sub-networks.

2.4. Wavenet-based vocoder

We train a Wavenet model to reconstruct waveform from the
predicted Mel spectrum. Wavenet is a fully probabilistic and
auto-regressive generative model that can generate audio sam-
ples directly:

p(x|h) =
T∏

t=1

p(xt|x1, x2, ..., xt−1, h), (1)

where x = x1, ..., xT is a given audio sample sequence and
each audio sample xt is conditioned on the samples at all pre-
vious timesteps. And h is the conditional inputs. Here we use
predicted Mel spectrogram as local conditions.

The architecture of the Wavenet model is very similar to our
system in Blizzard Challenge 2018 [27]. The entire model con-
sists of 40 layers, grouped into 4 dilated residual block stacks
of 10 layers. In every stack, the dilation rate increases by a
factor of 2 in every layer, and no dilation for the first layer.
The predicted Mel spectrograms are passed through a stack of
2 bidirectional QRNN layers with 256 units. And the local con-
ditions are up-sampled to match the frequency of waveform.
To overcome the distribution mismatch between the ground-
truth spectrogram and the predicted spectrogram, we generate
all the training data using teacher-force mode. And the gen-
erated spectrogram is subsequently used to fine-tune the pre-
trained Wavenet vocoder.

2.5. Frequency band extension

We find that the real sampling rate of the audio is 21kHz, al-
though the audio files are given in 24KHz sampling rate. To fur-
ther improve the quality of the synthesized speech, we expand
the sample rate of the synthesized speech to 32KHz through a
bandwidth extension module.

Figure 2 illustrates the procedure of bandwidth extension.
We first generate 32 KHz random noise signals from a normal
Gaussian distribution. And then we filter the noise signals with
a high pass filter, leaving the signal of which the frequency en-
ergy below 11KHz is zero. After predicting Mel spectrum using
the acoustic model, we convert the predicted Mel spectrum to
linear spectrum and adjust the amplitude of the filtered signals
according to the average energy between 10kHz and 10.5 kHz
of the linear spectrum. Finally we convert the sample rate of the
synthesized speech to 32 kHz from 24 kHz and add the adjusted
signals into it.

3. Results
In this year’s challenge, there are 26 systems in total including
natural speech (system A) and Merlin baseline (B). Our submit-
ted system is annotated as C. There are four criteria in the eval-
uation: Mean Opinion Score (MOS), speaker similarity, Pinyin
Error Rate (PER) and Pinyin+Tone Error Rate (PTER). We will
discuss the details as follows.

3.1. MOS evaluation

The MOS test results are based on all the listeners’ responses,
including paid listeners, volunteers and experts. Figure 3 shows
the MOS results of all systems.

From the naturalness MOS results, as expected, the orig-
inal natural speech achieves the highest score of 4.7. System
M achieves the highest score of 4.5 among all the submitted
systems, which is very close to the natural speech. The MOS
of our system is 3.8. Analyzing the results, we guess that the
main influence factors are the performance of the vocoder and
the prosody of generated speech.

3.2. Similarity evaluation

Similarity tests are carried out by the organizer, in which listen-
ers are asked to judge whether the generated speech is similar to
the target speaker. The speaker similarity MOS results collected
from all listeners are shown in Figure 4.
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Figure 2: The architecture of band extension.

From the similarity results, we can find our system achieves
a good speaker similarity. As mentioned earlier, this year’s chal-
lenge only provides a single speaker dataset. To ensure speaker
similarity, we only use the provided data to train the acoustic
model and the Wavenet vocoder. We don’t use any external
speech data to train the acoustic model. Hence we believe that
the vocoder performance directly affects the speaker similarity.
Meanwhile, the generated prosody from the acoustic model may
also have a clear influence on the perceived speaker similarity
by the listeners. We also find that System I and W achieve very
good MOS in terms of naturalness, but their similarity scores
are not so good. This is probably because some external data
are used to help to build the speech synthesis system for the
target speaker, which affects the speaker similarity.

3.3. PER evaluation

Besides the MOS evaluation of naturalness and similarity, lis-
teners are also asked to transcribe the generated speech, i.e.,
intelligibility evaluation. Figure 5 shows the pinyin error rate
(PER) of each system.

In this evaluation test, the PER of our system is 12.3%.
Since we use a front-end module, the performance of our G2P
module directly affects this result. Besides, there also may ex-
ist some pronunciation errors caused by the seq2seq acoustic
model. We can improve the intelligibility of generated speech
from these two aspects in future.

3.4. PTER evaluation

Different from English, the pronunciations of Chinese charac-
ters are also affected by the tones, so the Pinyin+Tone Error
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Figure 3: Naturalness mean opinion score of each system.

Rate (PTER) is calculated from the listeners’ transcripts. The
results are shown in Figure 6.

The results indicate that PER and PTER of each system
have very similar trend, where PTER is a little bit higher than
PER. We guess that all systems suffer from the tone errors. It
may be caused by the phonetic annotation process, such as the
polyphone disambiguation module. Besides, we also find that
the acoustic model may generate a few wrong tones. Through
internal experiments, we find that using separate representation
of tones can alleviate this problem especially for limited train-
ing data.

4. Conclusions and future work
This paper presents the details of our submitted system and
summarizes the results in Blizzard Challenge 2019. In our sys-
tem, attention-based seq2seq model and neural vocoder are used
in order to achieve natural and high-fidelity speech. From the
results, we believe that there is still substantial space for perfor-
mance improvement in building speech synthesis systems from
stylistic wild data.
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Figure 6: Pinyin+Tone Error Rate of each system.


