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Abstract
In this paper we present the entry from CMU to Blizzard

speech synthesis challenge 2019. We begin with a description
of build process for our base voice. We then present the fol-
lowing modifications to base voice: (1) We investigate the ef-
fectiveness of sub-sentence training of acoustic models aimed
at better utilization of available aligned data (2) We investigate
the applicability of strategic gradient backpropagation to accel-
erate the training (3) We experiment with iterated dilated con-
volutions in WaveNet to obtain compact models. Although our
current performance seems very inefficient, we are actively pur-
suing approaches to strengthen our voice building framework.
We believe we are progressing in the right direction and antici-
pate a much stronger performance in the coming evaluations.
Index Terms: speech processing, convolutional neural net-
works, Tacotron, WaveNet

1. Introduction
Blizzard speech synthesis challenges were devised to better un-
derstand different corpus driven speech synthesis techniques on
a common dataset. As a part of this, current evaluation focuses
on building voices based on data resources from the internet.
Language for the current evaluation is Mandarin. Our submis-
sion to this year’s challenge was based on statistical parametric
speech synthesis framework. Specifically, we have employed
Sequence to Sequence neural network based approach to map
the textual content to corresponding acoustics. There have been
continuous and significant improvements in all aspects of this
framework of speech synthesis from textual representations[1]
through post filtering[2].

Approaches such as[3, 4, 5, 6] have demonstrated that
Seq2Seq models are capable of reliably learning reasonable as-
sociations between the textual and acoustic modalities. These
approaches have been utilized in building systems for new
languages[7] as well as improving the models for existing
ones[8]. Moreover, adaptation of these approaches to various
tasks has been investigated[9]. Similarly, the world of vocoding
has seen tremendous progress. Deep Neural Generative mod-
els aimed at vocoding[10] aim to model the joint probability of
the data distribution and the conditioning information as a prod-
uct of conditional distributions. Typical implementation of such
models follows an autoregressive framework[10] although other
formulations[11] have been suggested as well. Such models
have proven very effective in addressing one of the major chal-
lenges with conventional vocoding techniques - fidelity. These
advances have led to flexible systems capable of generating dif-
ferent styles[12, 13, 14, 13] of speech and ability to build voices
from noisy[15] or very minimal data[16]. The elegance of such
Seq2Seq models comes from the fact that they can be trained
without making assumptions based on prior knowledge specific
to speech. Therefore, we have employed Seq2Seq based ap-
proach as our cornerstone toward building our submission and

Figure 1: Architecture of our BaseVoice build process

have made extensions to the same.
Broadly, we have investigated the following approaches via

our current submission:

• We investigate the possibility of jointly training acoustic
model and the vocoder.

• Since the amount of aligned speech and text after our ini-
tial alignment step was limited, we investigate the appli-
cability of sub sentence training in the context of acous-
tic models. We accomplish this using an external dura-
tion model at the phone level.

• To accelerate the training, we investigate the usage of
strategic back propagation of gradients.

• To build compact and stable vocoders, we investigate
building vocoders with shared parameters. Specifically,
we share the parameters of all dilated convolutions with
the same dilation rate in WaveNet.

The rest of this paper is organized as follows: We begin
with a description of our base voice in section 2. We then
present various approaches we investigated in section 3. This
is followed by evaluation results and discussion. We present the
observations made from post evaluation analysis and conclude
this report.

2. BaseVoice
In this section, we describe our base voice built using a new
module, FALCON Seq2Seq within Festvox[17] framework for
statistical parametric speech synthesis. In brief, our system con-
sists of two jointly trained components: (1) Acoustic model to
predict acoustic vectors on a per frame basis and (2) Vocoder
which generates speech on a per sample basis conditioned on
the predicted acoustic vectors. For the current submission we



have not performed any postfiltering at the acoustic vector or
sample level.

2.1. Data

The database used for building our submission was collected
from an internet talk show by a well known Mandarin charac-
ter. Topics of the utterances seemed contemporary and dealt
with a variety of issues. We are provided 8 hours of speech
data and corresponding transcription. Each utterance was one
minute long, leading to a total of 480 utterances.

2.2. Voice Building

As preprocessing, we perform the following steps:

• Alignment and Segmentation: Since the provided utter-
ances seemed too long to build a sequence to sequence
acoustic model, we have performed segmentation of the
utterances into smaller chunks(referred to as sub utter-
ances hereafter) using EHMM based alignments. For
acoustic models to perform alignment we have used mul-
tilingual models built as part of [18]. This resulted in
2178 sub utterances totalling three hours of speech. The
mean duration of sub utterances was 5 seconds while the
maximum utterance was of length 23 seconds. The nor-
malized histogram of sub utterance durations can be seen
in figure 2 (b).

Figure 2: (a) Normalized histogram plot of utterance lengths in
Arctic dataset (b) Normalized histogram plot of sub utterance
lengths from our alignment module

• Conversion of aligned text to Pinyin: Our front end cur-
rently cannot process Mandarin characters. Hence we
have converted the text data from the sub utterances into
Pinyin.

• Tokenization and G2P: We consider any text entry sep-
arated by white space as a token. Once tokens are ob-
tained, we have used US phoneset to perform mapping
from graphemes to phonemes based on CMU pronunci-
ation dictionary.

• Acoustic Feature Extraction: We perform acoustic fea-
ture vector extraction over a 50ms frames obtained by
applying a hamming window with a frame shift of 12.5
msec. The speech files have been high pass filtered with
cut off frequency of 60 Hz prior to feature extraction. We
obtain 1025 dimensional linear and 80 dimensional mel
frequencies.

• Acoustic Model Component: Our acoustic model is
based on Tacotron[3] Seq2Seq speech synthesis system
and is shown in the figure 1. We have used phones as
the input instead of characters. We have not performed
masking the loss value for padded frames as is typically
done in Seq2Seq models. We found that not not masking

forces to predict (zero) padded frames as well and helps
the model better predict end of sentence as mentioned
in[3]. Since adjacent frames seem to be correlated, our
decoder predicts 3 frames per timestep. We have used a
batch size of 64 to train the baseline model.

• Vocoder: Our vocoder is based on WaveNet[10].
Speech signal was power normalized and squashed to
the range (-1,1). We have used 16 bit mulaw quantiza-
tion to encode individual samples. Instead of transposed
convolutions we have employed linear interpolation to
upsample the acoustic frames to match the time resolu-
tion of speech samples. To optimize the model, we use
discretized Mixture of Logistics loss[19, 20] with 12 lo-
gistic classes.

Our acoustic model and vocoder are trained jointly. While
forcing the model to predict padded frames facilitates better
prediction of end of sentence, authors are not aware of simi-
lar constraints to tighten the internal segment boundaries. We
hypothesize that employing joint training would force local at-
tention to better learn acoustic correspondences between seg-
ment boundaries. Our model consists of three loss components:
(1) L1 Divergence between predicted and original mel spectro-
grams (2) L1 Divergence between predicted and original linear
spectrograms (3) Mixture of Logistics loss from the vocoder. To
make the training of vocoder faster, we have used chunks of ran-
domly selected 8000 timesteps of raw signal and corresponding
predicted acoustic frames. We have used a batch size of 16 and
an upsample convolution block with 4 layers that upsample at
{2,2,4 and 5} times respectively.

3. Experiments
3.1. Sub sentence Training using aligned segment durations

From figure 2, it can be observed that sub utterances from
our alignment module are skewed towards longer lengths. In
our informal model component evaluations, we observed that
the acoustic model training seemed unstable compared to other
models we built using English data. Inspection of attention
mechanism led us to believe that the model was failing to con-
verge. We hypothesized that this might be due to the wide vari-
ety in the length of our sub utterances. Based on analysis in sec-
tion 3.1.1, we postulate that a reasonable way to circumvent this
issue is to use sub-sentence training: To train smaller chunks
within the sub-utterances since we already have duration infor-
mation from our alignment module.

3.1.1. Role of Attention in Sub Utterance Alignment

Let ph1,...,phm denote the phonemes in the textual domain that
have been transformed by an encoder network to state vec-
tors p1, ..., pm. Let y1,...,yn denote acoustic frames in the tar-
get sequence. A typical attention based encoder decoder net-
work such as Tacotron factorizes the joint probability of acous-
tic frames Pr(y1, ..., yn|p1...pm) as Πt=n

t=1 Pr(yt | p1...m,st)
where st is a decoder state summarizing y1,...yt1. For each
time step t, an attention variable at is used to denote which
encoded phoneme state of p1...pm aligns with yt. Let P(at =
j|p1...pm,st) denote the probability that encoder state pj is rele-
vant for output yt. Typically this conditional probability is esti-
mated using a softmax function over attention scores computed
from pj and decoder state st as follows.



P (at = j|p1...pm, st) =
eAθ(pj ,st)∑t
k=1 e

Aθ(pj ,st)
(1)

where Aθ is the attention unit that scores each input state
pj as per the decoder state st. This is followed by a convex
combination of the input states to model log likelihood for each
output acoustic vector yt.

logPr(yt|x1..xm) = logPr(yt|
∑
a

Pt(a)xa) (2)

In this scenario, attention is essentially a latent determinis-
tic variable that is conditionally dependent on the convex com-
bination from encoded representation of input phonemes. It is
responsible for the sentence internal association between textual
and acoustic modalities.

3.1.2. Sub Sentence Training

We posit that it is possible to improve the association learnt by
acoustic model by using sub sentence training: selecting aligned
segments of text and acoustics within a sentence. In addition,
selecting segments within a sentence might lead to the model
utilizing the available data more efficiently. We note that such
an approach is already used for vocoding: Typical vocoders the
authors are aware of are trained using aligned chunks of acous-
tic vectors and corresponding speech samples as opposed to full
utterances. While this is due to GPU memory constraints in the
context of vocoders, we investigate applying similar strategy to
acoustic modeling. We belive that this facilitates local attention
mechanism to better learn the mapping from phonetic space to
the acoustic space.

The steps we have used for sub sentence training are men-
tioned below:

Algorithm 1 Sub sentence Training of Acoustic Model

Obtain segment durations using EHMM
Refine segment durations using MoveLabel
while n < GlobalUpdates do

for instance in batch do
StartIdx = random(0, SubUtteranceLength)
StartSegment,StartDur=findClosest(StartIdx,AlignedSegments)
EndIdx = StartIdx + SelectedDuration
EndSegment,EndDur=findClosest(EndIdx,AlignedSegments)

end for
Add selected sub sentence <text,frames> pair to batch
Iterate over batch

end while

3.1.3. Refinement of Segment Boundaries

Since alignment between text and acoustic vectors is crucial for
sub sentence training, we refine the segment durations initially
obtained using EHMM using [21].

• To improve the segment boundaries obtained from ini-
tial labeling, we employ different speech representation,
MCEPs. For each of the states obtained from segmen-
tation, we extract acoustic feature vectors over a 5ms
frames obtained by applying a hamming window. Spec-
tral representation that we use is MCEPs and were ex-
tracted using the SPTK toolkit [22]. The order of MCEP
was chosen to be 24 with a frequency warping factor

of 0.42 and a small value (1.0E-08) was added to the
periodogram. For F0, we interpolate between unvoiced
section ensuring breaks during silences and then apply a
post smoothing using a 25 ms window.

• We examine each segment boundary and consider mov-
ing it forward or backward (by one frame) and investi-
gate whether this decreases the distance between origi-
nal and predicted frame. This process is performed over
all the labels and then the models are rebuilt. The dis-
tance is measured in terms of unnormalized Mel Cep-
stral Distortion(MCD) including the energy coefficient
but not the deltas. We have performed 10 iterations over
the entire database as the improvement in MCD stopped
at that point. The results of this procedure have been
outlined in the table 1.

Table 1: Refinement of segment durations

Pass No. of Moves MCD F0 Error Duration Error

1 58941 7.065 32.808 0.964

2 55467 7.049 32.712 0.964

3 51224 7.047 32.7 0.963

4 48930 7.041 32.4 0.959

5 47844 7.036 32.35 0.948

6 47342 7.022 32.23 0.946

7 46541 7.021 31.91 0.942

8 43451 7.018 31.82 0.942

9 42872 7.020 31.86 0.947

3.2. Strategic Backpropagation to enable joint training

While training our base model, inspection of scalar loss value
indicated that the model reaches around 95% of the optimal loss
value within 10K steps(5% of training steps). Subsequent gradi-
ent updates result in minute contributions towards the transition
toward optimal loss value. The authors have not found any ex-
isting literature analyzing this region in the context of Seq2Seq
Text to speech models. We hypothesize that the model compen-
sates for macro issues(eg., pronunciation of vowels vs conso-
nants) in the initial stages and spends rest of training phase in
filling the micro details (eg., pronunciation of ax vs ah).

We posit that contribution from smaller gradient updates in
the micro detail phase can be ignored to result in better training:
Since the absolute magnitude of the gradients is small while
they contribute equal weight to normalization, ignoring such
gradients might lead to sharper overall update helping the model
in the micro detail phase. Note that L1 divergence which is em-
ployed in Seq2Seq TTS models also results in sharper gradients
compared to L2 divergence which was employed in segment
based statistical parametric methods.

To facilitate this, we select the gradient updates to include
in the model training based on the absolute loss values after
each forward pass during training. The steps are mentioned
in Algorithm 2. This approach is inspired by selective back
propagation[23]. However, they disable backpropagation using
a hard rule: When the threshold hyperparameter is set to 0, the
gradient is backpropagated only when the model makes an error.
While this may be suitable in the context of classification tasks
for which their model was deployed, tasks involving regression



Algorithm 2 Strategic Back-propagation

Forward pass through the model
Compute divergence values for each instance in batch.
loss=[]
Pick a threshold value
for divergence in BatchOfDivergences do

if divergence > threshold then
loss+=divergence

else
idx=random(0,1)
if idx > 0.5 then

loss+=[divergence]
end if

end if
end for
BatchLoss=sum(loss)/len(loss)
Back propagate loss

present an opportunity to investigate interesting modifications.
Our approach can be seen as a softer version, similar to [24]:
When absolute value of a gradient is less than preset thresh-
old, its inclusion in the backpropagation is stochastically deter-
mined. Other variants of this approach can be employed such as
scheduling the threshold as well as the stochasticity. However,
in our current submission we have employed a simple stochas-
ticity component: If a gradient is less than the threshold, it is
included in the backpropagation based on a coin toss.

Our approach can also be interpreted from the view of se-
lective attention[25] to the most relevant contributors[26]. In
its extreme case, choosing to only use the gradient with the
most loss magnitude is similar computationally to hard atten-
tion. Such an approach has been shown to be employed in nat-
ural neural network design (WTA approach in [27]).

3.3. Dilated Convolution Parameter Sharing in WaveNet

WaveNet [10] is an autoregressive neural model with a stack
of 1D convolutional layers that is capable of directly generat-
ing audio signal. The input to WaveNet is subjected to corre-
sponding gated activations while passing through each dilated
convolutional layer and is classified by the final softmax layer
into a µ law encoding. The concrete form of the residual gated
activation function is given by following equation:

rd(x) = tanh(Wf ∗ x)� σ(Wg ∗ x) (3)

where x and rd(x) are the input and output with dilation d, re-
spectively. The symbol ∗ is a convolution operator with dilation
d and the symbol � is an element-wise product operator. W
represents a convolution weight. The subscripts f and g repre-
sent a filter and a gate, respectively. The joint probability of a
waveform X can be written as:

P (X|θ) =

T∏
t=1

P (xt|x1, x2..xt−1, θ) (4)

given model parameters θ. During implementation of WaveNet,
the autoregressive process is realized by a stack of dilated con-
volutions. The final output yt at time step t can be expressed
mathematically as:

ŷt ∼
D∑
d=0

hd ∗ rd(x) (5)

where x, y represent input and output vectors; D is the num-
ber of different dilation used and d is the dilation factor; hd
is the convolution weights. This stack of convolutions is re-
peated multiple times in the original WaveNet. Optimization
in WaveNet is performed based on the error between predicted
sample and the ground truth sample conditioned on previous
samples in the receptive field alongside the local conditioning.
Expressing the loss function being optimized mathematically
the error at sample t is:

lt = Div(ŷt||yt) (6)

Here, we define the divergence similar to the [19], To opti-
mize this loss, the contribution from the individual convolution
layers towards this global error function must be nullified. Now
let us consider the expression for intermediate output for a sin-
gle filter in Eqn 5:

xout(t) =

t∑
τ=0

h(τ)x(t− τ) (7)

where τ is the receptive field covered by the model and h(τ)
represents the discrete state representation at time t. Without
loss of generality and dropping the term τ for brevity, the spec-
tral representation generated by the model can be expressed as:

Y (z) = H(z)X(z) (8)

Considering the discrete nature of input from Eqn 6, an in-
terpretation of Eqn 8 is that the neural auto regressive model
acts as the transfer function and is discretized by convolving
with the samples from original signal. It has to be noted that this
is similar to the formulation of source filter model of speech,
specifically the periodic components corresponding to voiced
sounds. Voiced sounds typically represented as impulse train
are convolved with the transfer function to generate spectral en-
velope. As a corollary, from equation 6 and 8, we posit that
the optimization in WaveNet model is performed by minimiz-
ing the divergence between true and approximate spectral en-
velopes. With the presented interpretation, we hypothesize that
sharing parameters across the filters(individual dilated convolu-
tion components) facilitates the filters to be more stable com-
pared to a non shared scenario. This is also inspired by obser-
vations that show efficiency of such parameter sharing [28, 29].
In terms of model size, we obtain a reduction of two thirds due
to parameter tying.

4. Evaluation
The subjective evaluation was conducted based on various cate-
gories: pleasantness, speech pauses, stress, intonation, emotion,
listening effort. The identifier of our system is P. Mean opinion
score of our system as provided by all listeners is depicted in
figure 3.



Figure 3: MOS Scores for all listeners - Overall Impression

4.1. Discussion of Results

We have ranked last in the current evaluation. Informal eval-
uations of our submission revealed that speech generated by
our model lacks comprehensibility. To analyze the reason for
this, we have performed an internal evaluation of individual
approaches proposed in the current submission. For this we
have used Arctic[30], LJSpeech[31] and Indic[32] datasets. Al-
though these datasets differ in the language of the current eval-
uation and the findings might not be transferable, we have cho-
sen them for initial analysis since we have worked with these
datasets in the past. Based on these ablation evaluations, we cur-
rently believe that the component responsible for most degrada-
tion of quality in our system is that of sub sentence training.

4.1.1. Sub Sentence Training - Only Acoustic Model

We performed sub sentence training of acoustic model using
Arctic and Indic datasets. The duration of sub sentences was
varied from 1.5 to 8 seconds. We have observed that while dur-
ing training the model seems to learn association between the
textual input and acoustic vectors, there were instances where
the synthesized speech was either distorted or incoherent with
the text. Most of these instances were found when the ratio of
selected duration to the mean length in the dataset was less than
40%. In addition, a histogram analysis showed that the sub ut-
terances obtained from our alignment module are significantly
longer compared to the other datasets we have employed atten-
tion based models thus far. For comparision, a histogram plot of
Arctic dataset can be seen in figure 2. While the length distribu-
tion was not as regular as Arctic for the other dataset(LJSpeech)
we compared against, we observed that the maximum length in
[31] was still less than in our sub utterances.

Here are some of the things we believe we should improve
for our next submission:

• Data size from the output of our alignment module was
3 hours compared to 8 hours that was originally pro-
vided. Although we implemented sub sentence approach
to handle this, we believe a much stronger approach

would be to investigate approaches to use the whole data
by realignment.

• Our current implementation of jointly training acoustic
model and vocoder seems very naive: (1) Data resource
utilisation by vocoder in such a training paradigm is very
inefficient. (2)Vocoder always receives predicted spec-
trogram. We believe (a)scheduling the vocoder input
by starting from original spectrogram but slowly transi-
tioning to predicted spectrogram (b) adopting wake sleep
training procedure as opposed to the current implemen-
tation might lead to a better base architecture.

• We plan to further investigate the performance of sub
sentence based training approach for acoustic model.

5. Conclusion
In this paper we have presented the entry from CMU to Blizzard
speech synthesis challenge 2019. We have made these modifi-
cations to our previous submission:(1) We investigate the effec-
tiveness of sub-sentence training of acoustic models aimed at
better utilization of available data (2) We investigate the appli-
cability of selective gradient backpropagation to accelerate the
training (3) We experiment with iterated dilated convolutions in
WaveNet to obtain compact models. We are actively pursuing
approaches to strengthen our voice building framework. We be-
lieve we will have a much stronger framework and hence a more
competitive submission in the coming evaluations.
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