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Abstract
This paper presents the Mobvoi team’s text-to-speech system
for Blizzard Challenge 2019 (BC2019). The training data pro-
vided by this challenge is about 8 hours of speech from one na-
tive Mandarin Chinese speaker in talk shows. We built a speech
synthesis system based on end-to-end deep learning technol-
ogy. The system consists of a hybrid front-end that processes
both Chinese and English texts, a sequence-to-sequence model
that converts the phoneme sequence into a mel spectrogram se-
quence, and a neural vocoder that generates audio from the mel
spectrogram.
Index Terms: text-to-speech, Blizzard Challenge 2019, end-to-
end, hybrid front-end, neural vocoder

1. Introduction
To better understand and compare different techniques in build-
ing corpus-based speech synthesizers on the same data set, the
Blizzard Challenge has been devised. The task is to build a syn-
thetic voice from the released speech data set. A prescribed set
of test sentences are synthesized for listening tests [1].

The Blizzard Challenge has been held once a year since
2005 [2]. This year, about 8 hours of speech data from internet
talk shows by a well-known Chinese anchor are released. All
data are from the same speaker, and the speech is stylistic and
expressive.

At present, commonly used speech synthesis technologies
can be grouped into the following three categories:

1. Statistical parametric speech synthesis (SPSS).
This kind of methods characterizes the speech signal us-
ing acoustic parameters, and a statistic model is used
to build the mapping relationship between the text in-
put and the acoustic output to synthesize arbitrary texts.
Depending on the model used, systems in this category
can be divided into HMM based [3] and neural networks
(DNN [4], RNN or LSTM [5, 6]) based.

2. Unit selection and concatenation.
For the sentence to be synthesized, such kind of meth-
ods first select a set of suitable speech segments from
a pre-recorded large speech database and then splice
the selected speech segments in the time domain in or-
der to output the synthesized speech. Speech synthesis
based on unit selection relies heavily on the size of the
speech database and the quality of the unit selection al-
gorithm [7, 8, 9, 10].

3. End-to-end deep learning.
End-to-end speech synthesis systems mainly includes an
attention-based sequence-to-sequence model [11, 12, 13]

* Work done during internship at Mobvoi.

which maps the text representation to an acoustic repre-
sentation and a neural vocoder [14, 15, 16] that trans-
forms the acoustic representation into a waveform. End-
to-end systems simplify the traditional SPSS model
framework, and exceeds the traditional SPSS method
and unit selection method in both naturalness and sim-
ilarity metrics.

Given that the end-to-end approach is the best performing
speech synthesis technology, we choose to build our system us-
ing Tacotron2 [12] and WaveNet [14]. If Chinese characters are
used directly as input, it is difficult to learn the pronunciations
of Chinese characters through an end-to-end model due to lim-
ited data. Therefore, we use a text analysis module to convert
the text into a phoneme sequence, which reduces the difficulty
of the model training given the limited data.

As shown in Figure 1, our system consists of three parts.
First, we use a hybrid front-end to convert the text into a se-
quence of phonemes, tones and prosodic boundaries. Second,
the sequence is converted to a mel spectrogram sequence via
Tacotron2. Finally, high-quality audio is generated through a
WaveNet vocoder.

The organization of this paper is as follows. In Section 2,
we detail each module in the Mobvoi system. In Section 3, the
evaluation results are shown and discussed. Finally, we con-
clude our work in Section 4.

2. Mobvoi TTS System
2.1. Data processing

The data provided by the organizer contains 480 audio files in
MP3 format with a sampling rate of 48 kHz. The audio files are
approximately 1 minute on average, with approximately 8 hours
in total. We first convert the audio to WAV format and down-
sample to 16 kHz. In addition, in order to facilitate the training,
we cut the long audio recording into short audio segments of no
more than 10s per segment. After segmentation, there are 4187
sentences in our training set.

Because the audio is hand-cut, the length of the silence be-
fore and after the segmented sentence varies a lot. This prob-
lem affects the attention module in Tacotron2 and the WaveNet
training. To solve this problem, we use the sox tool to split the
front and end silence, and re-splice about 200ms at the begin-
ning and end of each audio. We also found that the volume dis-
tribution of the audio in the data set is very uneven. So we use
an energy-based normalization method to normalize the audio
in the data set.

We checked the text and corresponding audio provided by
the organizer and found that some of the text and audio were
not exactly the same, so we relabeled the text using the data
provided by the organizer. This will ensure that the subsequent
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Figure 1: The architecture of Mobvoi TTS system.

training can be carried out normally. Otherwise, the attention
model in the Tacotron2 can not be trained properly.

2.2. Front-end

The front-end we use is a hybrid front-end that includes both
Chinese text analysis and English text analysis. The two front-
ends share the segmentation and prosody prediction module.
The other modules such as part-of-speech prediction, g2p, etc.
are language-specific. The input text first passes through the
text normalization module and then passes through a word seg-
mentation module trained by a conditional random fields (CRF)
model. Finally, according to the Chinese and English cate-
gories of the word after the word segmentation, the front-end
of the specific language is used to process and obtain the cor-
responding phoneme sequence. As suggested in the Tacotron
paper [11], the end-to-end model does not require complex lin-
guistic features of the traditional model, so our front-end only
needs to predict the phoneme sequence corresponding to the
text.

For Chinese, we also need to consider how the tone of the
final is combined with the phoneme. There are three ways of
combination:

1. Tone and final binding
Since the finals are closely related to the tone, it is most
intuitive to add tonal information by means of tone and
finals. It is reasonable theoretically. However, such an
approach would make the embedding space of the final
and the sound adjustment body too sparse, and the input
with the same final and different tone can not share the
commonality of pronunciation. Experiments show that
the phenomenon of tonal modification is prone to occur

when the amount of data is not too large.

2. Tone alone as input
To reduce the number of categories that embedding rep-
resentation, we can separate the tone from the final and
use it as a way to enter the symbol alone.

3. The phoneme and tone are expressed separately
In order to distinguish the phoneme and the embedding
space of the tone, we can extract the embedding repre-
sentation of the space and the tone separately, and then
combine them by adding or concatenation.

Based on past experimental experience and for the sake of
simplicity, we chose the second method. We hope that the back-
end model can learn to distinguish between tones and phonemes
in the embedding space. Experiments show that the second
input mode has a fewer tonal modification, indicating that the
back-end model can learn the effect of tones.

Finally, in order to speed up convergence and control the
prosody by input, we also place the third-level prosody bound-
ary as input after the corresponding phoneme.

2.3. Back-end

The traditional statistical parametric synthesis method divides
the back end into a duration module and an acoustic mod-
ule. This splitting leads to the cascade transmission error of
the model when predicting the actual speech, resulting in over-
average of duration and over-smoothing of acoustic features.
In order to simplify the overall framework of speech synthesis,
the sequence-to-sequence technology based on attention mech-
anism is gradually beginning to be used in speech synthesis
tasks.

The sequence-to-sequence model based on attention mech-
anism usually consists of three parts. The encoder is mainly
used to extract robust sequential representations of text, and the
decoder is used to map text representations into acoustic fea-
tures recursively. The attention mechanism is used as the bridge
between the codecs and allows the decoder to selectively focus
attention on certain moments of the encoder outputs when gen-
erating the acoustic features. On the one hand, the sequence-
to-sequence model simplifies the text analysis module(use the
original text as input). On the other hand, the attention mech-
anism is used to learn the alignment mapping between unequal
length sequence, which avoids the complexity of manual time-
length annotation or forced alignment.

We use the Tacotron2 model as our back-end, accepting the
phoneme sequence generated by the front-end to generate the
corresponding acoustic features. The acoustic features are a se-
quence of 80-dim mel-scale filterbank frames, computed from
50ms windows shifted by 12.5ms. The model structure and pa-
rameters are consistent with the Tacotron2 paper [12], except
that the reduction factor is set to 2 (we tried to train a model of
reduction factor = 1, but the alignment result is poor).

We used 20-hour male data to train a basic model (trained
to 200k steps) and then fine-tuned the model with the BC2019
data. Compared with directly using the BC2019 data to train
the Tacotron2 model, this method can quickly train better
alignment, and the quality of audio inferred from this training
method is better than direct training.

2.4. Vocoder

Usually, because the speech waveform has a very fast change
frequency in a short time(16,000 samples per second or more),



researchers rarely model the waveform directly and instead
model relatively stable acoustic parameters extracted from the
audio. However, the upper bound of the sound quality im-
plied by the traditional vocoder based on the source-filter model
severely limits the sound quality of the synthesized speech,
making the synthesized speech lack of realism compared with
natural speech. The neural-vocoder technique greatly improves
the quality of synthesized speech by directly modeling the
speech waveform with deep neural network and bypassing the
traditional speech vocoder. Google’s DeepMind Lab presents a
model for directly modeling raw waveforms [14], which uses a
deep neural network based on dilated causal convolution to sim-
ulate real speech, and the resulting speech sounds better than the
baseline(speech generated using traditional vocoder). The opti-
mal speech synthesis system is more natural and almost identi-
cal to the human voice.

The network structure we use is basically the same as in
WaveNet [14], except for the following two aspects:

1. There are 20 dilated convolution layers, grouped into 2
dilation cycles, i.e., the dilation rate of layer k (k = 0...19)
is 2k(mod 10).

2. Instead of predicting discretized buckets with a softmax
layer, we follow Parallel WaveNet [15] and use a 10-
component mixture of logistic distributions (MoL) to
generate 16-bit samples at 16 kHz.

If the WaveNet model is trained using the acoustic param-
eters of ground truth, when the acoustic parameters predicted
by Tacotron2 are used as inputs in the inference, the generated
audio has a noticeable noise. In order to eliminate the mismatch
of acoustic parameters, we first train the WaveNet model using
ground truth features and then fine-tune it on the ground truth-
aligned(GTA) predictions of the Tacotron2 model. Experiments
show that this method can significantly reduce the noise in in-
ference and further improve the sound quality.

In order to speed up the inference, we adopted the fast gen-
eration algorithm of the paper [17]. The algorithm pre-stores
some calculated intermediate variables in the form of a cache
to provide the sample calculations for a future time. By us-
ing this method, the speed of synthesizing speech can be in-
creased by about 60 times(in our experiments). Although Par-
allel WaveNet [15] can continue to increase the speed of the
synthesis by 1000 times, the sound quality has some loss. This
challenge only requires offline audio synthesis, so we didn’t
choose to use Parallel WaveNet.

3. Evaluation Results
There are 26 systems in total, including 24 from participating
teams, one benchmark, and one natural speech. System A is a
natural speech recorded by the original speaker. System B is the
merlin benchmark system. System C to Z are the 24 participat-
ing teams, and system E is ours.

Table 1: Task 2019-EH1

Sections Detailed Description

section 1 Naturalness MOS (Mean opinion scores)
section 2 Similarity MOS (Mean opinion scores)
section 3 PER (Pinyin Error Rate)
section 4 PTER (Pinyin+Tone Error Rate)
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Figure 2: Mean opinion score, naturalness evaluation, from all
listeners.

The evaluation comprised four sections showed in Table 1.
The MOS and Similarity results are based on all the listeners’
responses, including paid listeners at Edinburgh, volunteers,
and experts. The PER and PTER are mainly based on paid lis-
teners’ responses, which produce more reliable results. Finally,
our system has achieved good results in all the criteria for the
Challenge. Details are as follows.

3.1. Naturalness test

Figure 2 shows the results of the naturalness MOS given by all
listeners for all the systems. In this test, listeners were asked to
listen to samples and assign scores either on a scale of 1 [Com-
pletely Unnatural] to 5 [Completely Natural]. Our system has
an average score of 3.9. We believe that if we train a Tacotron2
model with a reduction factor of 1 and increase the audio sam-
ple rate from 16 kHz to 48 kHz, our system can achieve a higher
naturalness score.

3.2. Similarity test

Figure 3 shows the results of the similarity MOS given by all
listeners for all the systems. In this test, each listener was asked
to decide how similar the voice in one new sample sounded
to the voice in two reference samples either on a scale from
1 [Sounds like a totally different person] to 5 [Sounds like ex-
actly the same person]. Our system has an average score of 3.8
and ranks fourth. This is mainly due to the powerful modeling
capabilities of the neural vocoder for the waveform.

3.3. Intelligibility test

Figure 4 and Figure 5 show PER (Pinyin Error Rate) and PTER
(Pinyin+Tone Error Rate), respectively. In this test, the listeners
were asked to listen to one audio at a time and write down what
they heard and to listen to as little audio as possible. Because
the tone of Chinese is very important for semantic expression,
not only the error rate of pinyin but also the error rate of pinyin
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Figure 3: Mean opinion score, similarity evaluation, from all
listeners.

with tone is counted.

We found that our system does not perform well on long
sentence and multiple repeated words. This is mainly due to the
fact that the attention module is not robust enough to generate
the correct attention to these sentences. We have noticed that
there have been many recent papers that improve the robustness
of the attention module, such as Monotonic attention [18], Step-
wise Monotonic Attention [19], etc. In the future, we will try
these methods to improve the intelligibility of our system on
Semantically Unpredictable Sentences (SUS).

4. Conclusions

This paper presents the details of our submitted system and
summarizes the results in Blizzard Challenge 2019. We built
a speech synthesis system based on end-to-end deep learning
technology. The system consists of a hybrid front-end that can
process both Chinese and English texts, a sequence-to-sequence
model that converts the phoneme sequence into a mel spectro-
gram sequence, and a neural vocoder that generates audio from
the mel spectrogram. Our system has achieved good results in
all the criteria for the Challenge.

In the future, we will continue to study speaker adaptive
techniques based on end-to-end techniques to produce a new
voice with a small amount of data. At the same time, we will
study different attention mechanisms to improve the robustness
of the end-to-end model.
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Figure 4: PER (Pinyin Error Rate) of each submitted system.
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