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Abstract
We describe the TL@NTU’s text-to-speech system for Blizzard
Challenge 2019 in this paper. The target language of this year
challenge is Mandarin, and some of the utterances to be synthe-
sized contain English words, which actually belongs to a mixed-
language text-to-speech task. Based on the above situation, we
employ unit selection based waveform concatenation method in
this year challenge, since we think it is easier to handle mixed-
language text-to-speech issue, compared with the conventional
statistical parametric method, which requires multilingual ex-
pertise to build an appropriate front-end text analyzer. We make
efforts to build the waveform concatenation system mainly fo-
cusing on two aspects. Firstly, we are building flexible phone
unit search table, allowing for approximate context-phone vec-
tor search. This is crucial for the system built with insufficient
data. Secondly, we propose a simplified waveform concatena-
tion method, yielding improved synthesized results.
Index Terms: text-to-speech,unit selection, waveform concate-
nation,

1. Introduction
Text-to-speech(TTS) synthesis is a technique to generate speech
waveform from a given input text [1]. In recent years, TTS syn-
thesis technology has been developed rapidly. This begins with
using Deep Neural Network (DNN) to substitute conventional
GMM-HMM models to estimate acoustic features from the in-
put linguistic features.

The process of DNN based Statistical Parametric Speech
Synthesis (SPSS) [2] approach is straightforward. It can be re-
alized with the following steps. The first step is to do text anal-
ysis to generate the front-end linguistic features. This requires
a huge linguistic expertise. Meanwhile, the acoustic features,
which are employed to synthesise the sound in the following
steps, are to be extracted and aligned to the corresponding lin-
guistic features. After that, we are to train a DNN model map-
ping the linguistic features to the corresponding acoustic fea-
tures. Finally, a vocoder is employed to synthesise the speech
taking the acoustic features from the DNN as input.

Recently, WaveNet [3], an auto-regressive waveform gen-
erative model, produces high quality synthesised speech that is
comparable to the real human speech [4]. Such a technique has
already been widely used in many TTS [5, 6, 7] and voice con-
version tasks [8, 9, 10]. Technically, given different conditional
input features, WaveNet behaves differently. For instance, if
WaveNet is employed as a jointly learnable TTS synthesizer, the
conditional features would be linguistic features [3], as the con-
ventional input of the DNN method. In contrast, if WaveNet is
employed as a learnable vocoder, the conditional features could
be different acoustic features, such as mel spectrogram or filter-
bank features [11, 12]. Since WaveNet is an auto-regressive

model, originally it is generating waveform sample by sam-
ple, the process of generation is extremely slow. To address
the issue, various kinds of speed-up approaches such as Par-
allel Wavenet [13] and Clarinet [14] are proposed. Though
a WaveNet is learnable, potentially producing higher quality
voice, one of its drawbacks lies in its highly necessity of human-
crafted linguistic features, as well as higher quality waveform to
train the models.

More recently, an end-to-end text-to-speech approach
named Tacotron [15] greatly simplifies the speech synthesis
process. It employs attention mechanism [16] to do forced-
alignment between spectrograms and letter/character sequences
implicitly. Once the end-to-end models generate the spectro-
grams, with which one can uses the Griffin-Lim algorithm [17]
to estimate the waveform/voice. Interestingly, with the spectro-
grams as conditional features, one can also use the WaveNet as
aforementioned to synthesize the voice.

Despite significant progress on text-to-speech technique de-
velopment in recent years, one still has challenges to synthesize
high quality speech, particularly in the case of insufficient or
low quality training data. This is what one faces in this year
Blizzard Challenge. The organizer only releases about 8 hours
of training data in Mandarin, and the data format is MP3 which
is lossy format. Besides, the data itself contains Mandarin-
English mixed utterances. If we want to synthesize speech for
such utterances, a bilingual front-end parser should be off the
shelf. This is also a challenge for us. Based on such consider-
ations, we choose the conventional unit selection based wave-
form concatenation method addressing the challenge.

Different from the previous TTS methods as mentioned,
unit selection based waveform concatenation TTS method [18]
belongs to non-parametric one. To build a waveform concatena-
tion TTS system, one has to solve the following problems. 1) To
begin with, a waveform unit must be determined, and a database
of such units must be built [19]. 2) Design an algorithmic strat-
egy to search the predefined unit[20, 21]. 3) Choose an algo-
rithm to realize waveform concatenation [22, 23, 24, 25, 26]. 4)
Post-processing can be optionally employed to smooth the con-
catenated waveform reducing the glitch. In this paper, we are
focusing on the first three problems, of which problems 2) and
3) are emphasized specifically.

In this paper, we use phone units, which are the initials and
finals of the syllable for Mandarin and normal phone for En-
glish, to build search database. To alleviate context-phone spar-
sity issue due to the incompleteness of the context-phone cov-
erage of the training data, we propose a search strategy, con-
sidering both exact and approximate match. Since the approx-
imate match based search method can potentially yield a lot of
loosely relevant units, concatenating such units would produce
degraded synthesized speech. As a result, we propose a sim-
ple but effective unit concatenation method, which results in



acceptable results with such limited training data.

2. TL-NTU unit selection synthesis system
2.1. Phone unit table building and search

The most priority task for unit selection based waveform con-
catenation is to define key-value tables realizing phone unit
search as accurate and flexible as possible. In this work, the
keys are integer vector representing context-phone information.
The value is simple, including wave file ID, both start time and
end time of each phone. For clarity, we also call such a value
as a candidate waveform unit. Each values are unique the in
the training data. The key problem is how to choose those can-
didate waveform units correctly. As a result, the most impor-
tant task is how to design a key vector representing a phone
unit. Our guideline is to be exact and flexible. That is, when a
context phone appears in the training data, we should search it
precisely, when a context phone is absent, we should find a sub-
stitute phone with a gentle relaxation, yielding minimal voice
degradation. Based on the above consideration, our key vector
is defined as in Table 1.

Table 1: Phone unit search key definition, where each key
represents as a integer vector. With different value for each
component, it can realize both exact and inexact phone unit
search,“Comp.” refers to the component of the key vector.

Comp. Meaning

Key

c1 Previous phone ID
c2 Present phone ID
c3 Next phone ID
c4 Present phone forward position in word
c5 Present phone backward position in word
c6 Word ID
c7 Word forward position in utterance
c8 Word backward position in utterance

To realize exact search using the phone unit key as shown
in Table 1, we just assign each component with the real integer
value corresponding to the position of each word and phone.
This is straightforward.

However one has many options realizing inexact search fol-
lowing the key definition in Table 1. The simplest one is to ig-
nore some components when conducting search. For instance,
one can ignore component c6 representing “word ID”, or other
phone ID, etc. In our work, we choose another alternative,
where the the components of the integer vector are defined dif-
ferently, as is shown in Table 2.

As shown in Table 2, the ”position” of each phones and
words is not precisely determined in our work, and it has three
alternatives, namely, the start, intermediate, and the end of each
word or utterance. In practise, we found the key as defined in
Table 2 yields better results for inexact match based search.

We note that after results submission, we realized both Ta-
ble 1 and Table 2 have flaws. They are not considering the word
ID of the neighboring phones. This can yield inexact match at
the word boundary when we are meant to only focus the exact
match.

Table 2: Phone unit search key definition, only for inexact
match, “Comp.” refers to the component of the key vector.

Comp. Meaning

Key

c1 Previous phone ID
c2 Present phone ID
c3 Next phone ID
c4 Present phone position in present word
c5 Present word ID
c6 Present word position in utterance

2.2. Waveform concatenation

If each candidate waveform unit selected from the tables as
mentioned in Section 2.1 is unique, then waveform concatena-
tion is a trivial task. However, the difficulty lies in for each can-
didate phone we have many candidate waveform units. There-
fore, waveform concatenation is crucial for a quality TTS sys-
tem.

Right now, as the training data is insufficient, context-phone
coverage is significantly incomplete. Besides, our phone unit
selection algorithm itself is not perfect, yielding unnecessary
noisy candidate units. As a result, the objective of the wave-
form concatenation method is to select those appropriate units
that are minimizing the concatenation cost. To achieve this ob-
jective, we are meant to resolve two problems. First, we use
tandem acoustic features which are more discriminative. Sec-
ondly, we propose a simple but effective method to estimate
concatenation cost with the tandem features.

The tandem features include 14-dimensional KALDI [27]
MFCC plus pitch features [28], 63-dimensional WORLD
acoustic features [29] including MGC (60-dim), log F0 (1dim),
AP (1-dim), and 30-dimensional bottleneck features [30] re-
spectively. The bottleneck feature extractor is trained with
KALDI MFCC features.

With the extracted features, we propose a method to esti-
mate the concatenation cost as illustrated in Figure 1.

The basic assumption of our proposed method is as follows.
Suppose each candidate of the selected waveform set for each
context-dependent phone are equally correct itself, then if the
two consecutive candidates are able to concatenate, theoreti-
cally, the concatenation cost for the two candidates should be
zero. Specifically, we estimate the cost as follows. Suppose
the window length that is used to estimate the cost is N (N=2,
as illustrated in Figure 1). We first extract N features starting
from the end of the first phone, then we extract N features star-
ing from the beginning of the second phone (Theoretically, if
they are real consecutive, then the two sequences are actually
overlapped). We compute averaged Euclidean distance between
two feature sequences as cost C1, which we call it as forward-
extended cost in Figure 1. Similarly, we compute the cost C2,
which we name it as backward extended cost in Figure 1. We
can think of them as “symmetric”. As a result, the final cost is
C1 + C2.

2.3. Data preparation

Aside from the focus on the algorithmic part as mentioned in
Section 2.1 and Section 2.2, data preparation is also an im-
portant procedure for a TTS system development. First, the
transcription of this year challenge are very noisy, except for
English words, it contains a lot of Arabic numbers and spe-
cial symbols, and different Chinese punctuation. We conduct
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Figure 1: Using forward-backward extended feature sequences
to estimate concatenation cost

a series of text normalization work, till all tokens in the tran-
scription are either English or Mandarin words. For audio file
preparation, we first convert the MP3 files into 16kHz wave
files. We also conduct speech volume normalization, ensuring
all the speech volume of the wave files stable. After these, we
use our in-house English-Mandarin code-switching ASR sys-
tem [31] to do forced-alignment to get the time-boundary for
each phone and corresponding word. In practice we extract the
context-phone key and corresponding waveform unit as value
from the alignment at the same time. Finally, we employ vari-
ous kinds of methods to extract different acoustic features and
concatenate them to estimate concatenation cost.

3. Evaluation Results
This section presents the evaluation results released by the or-
ganizer. Our system is labelled as “Q in this year challenge.

Three kinds of listeners participated in the listening tests,
including paid listeners, online volunteers and speech experts.

There are 26 systems in evaluation test including 1 bench-
mark baselines, 24 participant teams and a natural speech. Sys-
tem A is a natural speech, the System B is the DNN benchmark
built using the the Merlin toolkit [32].

Four types of evaluation were conducted in this year, in-
cluding Mean opinion scores(MOS), Similarity with original
speaker(SIM), Pinyin (without tone) Error Rate (PER) and
Pinyin (with tone) Error Rate (PTER). the MOS evaluates the
naturalness of the synthetic sentence with a score scale of 1 to
5. The SIM represents how similar the synthetic voice is close
to the reference samples on a scale from 1 to 5. PER and PTER
represent the accuracy of the synthetic speech, the difference is
PER doesn’t consider tone’s error,and both of PER and PTER
evaluated with word error rate (WER).

Figure 2 shows the overall Mean Opinion Score (MOS) re-
sults, where our system is represented as “Q”.

From Figure 2, the overall performance of our system is
worse than majority of competitive systems. Our system only
performs better than five systems,include the Merlin baseline
system as indicated with ”B”. The limitations of our system
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Figure 2: Mean Opinion Scores (MOS) results from all listeners,
our system is represented with “Q”.

mainly come from two aspects. First, its approximated search
results in phone units with different tone. Additionally, its cost
of concatenation is too simplistic, yielding a lot glitches. The
most obvious advantage is its capability to handle the mix lan-
guage TTS, while baseline Merlin system cannot handle that
without bilingual front-end facility.

Figure 3 reports the overall similarity scores presented by
the entire listeners between the synthesized speech and the orig-
inal speech.

The results shown in Figure 3 make us slightly surprised.
Although our system is a unit selection based waveform con-
catenation method, the similarity score of our system is still
left behind some systems such as ”M” or ”S”. We guess this
is again due to the two aforementioned reasons: 1) the synthe-
sized waveform by our system contains a lot of glitches, which
can produce degraded results. 2) our inexact match based phone
unit search method could ignore tone, which leads to undesired
tonal variation in the synthesized speech, as a result it yields
worse similarity.

Figures 5 and 4 present the accuracy of the synthesized sys-
tem in Toned and Untoned syllable error rates respectively.

Our system is even worse than baseline,As discussed,we
think the glitches and inexact match also had a negative impact
on the WER results. Here, the glitched could have more severe
effect.

4. Discussion & Conclusion
So far, there are two main options to build a TTS system. One is
statistical parameter based method, such as DNN, state-of-the-
art WaveNet, end-to-end methods. The other is non-parametric
method, such as unit selection based waveform concatenation
method, as employed in this paper. However, without a down-
to-earth sharper front-end text parser to generate linguistic fea-
tures, it will be very challenging for one to build a desirable
TTS system with limited and lower qua/lity training audio.

Originally, we intended to submit a statistical parameter
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Figure 3: Similarity scores from all listeners, comparing to the
original speaker. Our system is represented with “Q”.
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Figure 4: Untoned Pinyin Error Rate for accuracy evaluation,
our system is represented with “Q”.

based TTS system. However, we are short of a strong front-
end text parser to generate good linguistic features. We found
neither DNN, or state-of-the-art WaveNet can yield satisfactory
results. Besides, we don’t have many efforts by our own for
building such systems, we finally gave it up.

We also tried end-to-end TTS method. Unfortunately, due
to limited training data and the lower quality of the training data,
we also failed to synthesize acceptable voices.

Eventually, we resort the unit selection based waveform
concatenation method built over KALDI platform. Due to our
rough phone unit based search method, waveform concatena-
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Figure 5: Toned Pinyin Error Rate for accuracy evaluation, our
system is represented with “Q”.

tion method, as well as lack of a post-smoothing method, the
overall system performance is severely affected. In future, we
are ameliorating them.
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