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Abstract
This paper introduces the details of the speech synthesis sys-
tem developed by the USTC-iFlytek team for Blizzard Chal-
lenge 2019. An 8-hour Chinese male talkshow audio corpus
was released to the participants this year. A statistical para-
metric speech system (SPSS) that modeling speech waveforms
was built for the task. Firstly, Bidirectional Encoders Repre-
sentations from Transformers (BERT)-based multi-task models
were adopted for the front-end task. LSTM-RNN models were
used in duration modeling and acoustic modeling for back-end
task. Then, we proposed an autoregressive model to improve
the duration modeling, and a generative adversarial network
(GAN) to relieve the over-smoothing in acoustic modeling. At
last, a WaveNet based neural vocoder was utilized to model
speech waveforms from acoustic feature instead of melcepstrum
vocoder. The evaluation results show the excellent performance
of the submitted system.
Index Terms:Blizzard Challenge 2019, SPSS, BERT, autore-
gressive, GAN, WaveNet

1. Introduction
The USTC team has been submitting entries to Blizzard Chal-
lenge speech synthesis evaluation for twelve years since 2006.
In the first participation, we submitted a improved hidden
Markov model (HMM)-based statistical parametric speech syn-
thesis (SPSS) system using line spectral pairs (LSP) [1]. In the
next two years, in order to exploit the advantage of the large s-
cale of the released corpus and achieve better performance, an
HMM guided unit selection and waveform concatenation sys-
tem was submitted and achieved promising performance [2][3].
In the challenge of 2009, we adopted the minimum generation
error (MGE) criterion in decision tree clustering and used a
cross validation method to automatically control the scale of
the decision tree [4]. In 2010, as the size of released corpus
was growing, a globally covariance tying strategy was utilized
to reduce the footprint of the model, as well as improve the
model training efficiency [5]. In addition, a syllable-level F0
model was further introduced to consider the long term prosody
correlations between unit candidates to be concatenated. In the
Blizzard Challenge 2011, we proposed an improved unit selec-
tion criterion, maximum log likelihood ration (LLR) criterion,
to improve the performance of unit selection [6]. In 2012, a
set of audiobook corpus with different recording channels were
released. We utilized a channel equalization method to compen-
sate these channel differences [7]. A large corpus with hundred-
s of hours of unaligned audiobooks was released in Blizzard
Challenge 2013. The scale of the corpus was a challenge to both
the computation efficiency and robustness of the submitted sys-
tem. A phone dependent model clustering method was utilized

to enable parallel training of HMMs on such a large corpus.
We also proposed a weight optimization method to automati-
cally tune the weights of each component in the costs of our
unit selection criterion [8]. In Blizzard Challenge 2013, 2014
and 2015, corpus of many Indian languages were released to
non-native participants. We adopted a letter-to-sound (L2S) [9]
method to build frontend text processing for Hindi, and used a
simple character based front-end for other Indian languages [8].
We also adopted deep neural network DNN-based data driven
spectral post-filtering techniques [10] and modulation spectrum
[11] based ones to improve the quality of synthetic speech [12].
A non-uniform units were used for unit selection and concate-
nation in our system to improve the stability of our system for
Blizzard Challenge 2015 [13]. Last three year, a highly expres-
sive children’s audiobook corpus was released for system con-
struction. In our submitted system, an long short term memory
LSTM-based recurrent neural networks were adopted for tone
and breaking indices (ToBI) prediction to achieve high expres-
siveness. Another DNN-based unit embedding model was built
and the unit vector was adopted as phone unit feature, which
was used to evaluate contextual similarities between candidates
and target units during the unit selection time [14] [15] [16].

Unit selection systems always achieve excellent perfor-
mance at the Blizzard Challenge in recent years. Due to the
over-smoothing problem in acoustic modeling and the restric-
tion of vocoder, SPSS system performs not good enough in
voice quality and similarity [17]. However, SPSS is still a hot
research topic in academia and widely used in industry because
of its flexibility and small footprint. As reported in recent lit-
erature, deep learning techniques have been applied success-
fully to SPSS [18]. LSTM-RNN has achieved great perfor-
mance in both the front-end text processing [19] and back-end
acoustic modeling [20]. Moreover, a generative adversarial net-
work (GAN) based post-filtering was proposed to compensate
for the differences between natural speech and synthetic speech
in SPSS [21]. The performance of these methods is still con-
strained by the framework of two step (feature extraction and
acoustic modeling) optimization and phase information is lost
by a mel-cepstrum vocoder. Therefore, some researchers tried
to model speech waveforms using neural networks. Oord et al.
[22] proposed WaveNet, a deep convolutional neural network
for generating raw audio waveforms. The model is fully prob-
abilistic and autoregressive, with the predictive distribution for
each audio sample conditioned on all previous ones. Kalch-
brenner [23] proposed WaveRNN to increase the efficiency of
audio sampling from sequential models with Recurrent Neural
Networks. WaveRNN and WaveNet are also adopted as neural
vocoder that generates raw waveform samples from intermedi-
ate representations [24] [25]. There are also some research re-
sults in end-to-end speech synthesis, including Char2Wav [24],



Figure 1: Flowchart of the Our parametric system.

Tacotron [26] and Tacotron 2 [27], which synthesis speech di-
rectly from characters based on sequenceto- sequence [28] with
attention paradigm [29]. In order to further advance the state of
SPSS, we built a parametric system from the following 4 points:
(1) BERT-based front-end prediction, (2) duration modeling
with an autoregressive model structure, (3) GAN-based multi-
task acoustic modeling, (4) WaveNet-based neural vocoder to
generate raw waveform samples from intermediate acoustic fea-
tures. Finally, evaluation results showed the effectiveness of the
proposed system.

The rest of this paper is organized as follows: Section 2
presents the methods used in our system. Section 3 describes
system building. Section 4 shows the evaluation results. Con-
clusion is given in the end.

2. Framework
In this section, we will briefly introduce the framework of our
proposed parametric system. As indicated in Figure 1, our SPSS
system consists of two parts, the training phase and the synthe-
sis phase.

We followed this flowchart and constructed our submitted
system this year. A detailed description of the training and syn-
thesis procedure will be presented as follows.

2.1. Training phase

At the training phase, manual annotations were performed at
first, including Pinyin(with tone), prosodic word boundary,
prosodic phrase boundary and focus position will be checked
manually. in advance. These annotations were used for BERT-
based prediction models training at front-end module in synthe-
sis phase. Frame-level acoustic features were extracted, includ-
ing mel-cepstrum, F0s and voice/unvoiced (U/V) information.
An HMM alignment was conducted to obtain phoneme bound-

Figure 2: BERT-based Front-end model.

aries. Then, we applied LSTM-RNN models to duration and
acoustic modeling.

2.2. Synthesis phase

There are three major steps in synthesis stage. In the baseline
system, expressive linguistic features were extracted from input
text via text analysis by BERT-based front-end module, then
fed into duration prediction and parameter generation module.
WaveNet based neural vocoder took the post-processed acoustic
feature as condition and generated speech waveforms sample by
sample.

3. System Building
3.1. BERT-based front-end model

In the TTS synthesis system, the main front-end procedure in-
cludes text processing, grapheme-to-phoneme (G2P) conver-
sion and prosody prediction from text. The target of the text
processing is usually special marks conversion, such as con-
verting Arabic numerals to values or strings. The target of the
G2P conversation in Chinese TTS system is to convert Chinese
character to pinyin. Most of the time, the character and pinyin
are one-to-one mapping. Yet there are more than 900 poly-
phones in Chinese characters, which means one single character
could have several different pronunciations according to usages
and meanings in sentences. The target of prosody prediction
is to break a sentence into phrases and focus on words. The
strength of the break is usually classified as Prosodic Word (L1)
or Prosodic Phrase (L3), which means a minor break with 1-
4 characters or a major break with 5-7 characters respectively.
The focus words are usually emphasized words. This occurs
when a speaker wants to draw attention to particular words. In
brief, the front-end tasks of the Chinese TTS synthesis system
are special marks procession, polyphones classification, break-
s prediction and focuses prediction. We use multi-task model
based on BERT (Bidirectional Encoders Representations from
Transformers)[30] as the front-end model in TTS synthesis sys-
tem. Figure 2 illustrates the framework of BERT-based multi-
task model.

In the pre-training procedure, firstly, we used Chinese un-
supervised corpus in novel and news fields to pre-train BERT-
base model. The model size of BERT-base is 12 transformer



encoder blocks with hidden size as 512 and self-attention heads
as 8. We adopt masked language model (MLM) as the pre-
training task to train a deep bidirectional representation. We
randomly mask 15% of the input characters and then predict
the masked characters. In the fine-tuning procedure, we used
annotation data to model the front-end tasks mentioned above,
such as Polyphones classification, L1 prediction, L3 prediction,
special marks procession and focuses prediction. We use multi-
task learning model for the front-end tasks. More specifically,
the five tasks share the BERT language model (LM) as an en-
coder, and use DNN model as a decoder respectively. The de-
coder maps the character representations of BERT LM output
to target spaces. We use mini-batch based stochastic gradient
descent (SGD) and cross entropy loss to learn the parameter-
s. In each epoch, the mini-batch is selected from the mixed
annotation data from different tasks, with an index to distin-
guish data sources. The BERT LM encoder is updated for all
the tasks, and the DNN decoder are updated according to the
task-specific objective for each task. In the inferring procedure,
we use sentences on L4 level as input data. For every character
of different tokens such as Chinese, English and symbol, there
will be five kinds of output, Poly-out, L1-out, L3-out, Spcl-out
and Focus-out. With a softmax classifier, we get the labels of
max probability. According to the Poly-out labels, the pinyin
of the Chinese polyphones is predicted. According to the L1-
out and L3-out labels, the system decides whether there is a L1
break or L3 break. According to the spcl-out label, the system
converts the special marks such as Arabic numerals to values or
strings. According to the Focus-out label, the system decides
whether there is an emphasized character.

3.2. Duration modeling

Speech duration modeling is critical for the expressiveness of
SPSS. Speech duration is an important part of speech prosody,
and it will be used as input for the following acoustic model-
ing, further affecting the intonation of speech. An HMM-based
alignment was performed to get the phoneme durations for du-
ration modeling. To better fit the expressive corpus, we built
an autoregressive model for quantified speech durations. The
framework of the model is shown in figure 3. The duration mod-
el followed an autoregressive fashion. Since there is little corre-
lation in speech duration values, the context and duration values
were concatenated as the auto-regressive input. The autoregres-
sive input was fed to a causal encoder and then the output was
shifted as the previous embedding input for the decoder. On
the other side, the context was fed to a context encoder to get
the context embedding. The previous embedding and contex-
t embedding are sent to the decoder to predict the duration of
current phoneme. The context encoder was composed of con-
volution banks and bi-directional LSTM and the causal encoder
consisted of convolution banks with causal convolutions and L-
STM. The decoder was composed of two LSTMs.

The context input included phoneme identifications, tones
of the phonemes, and other expressive linguistic features, such
as ToBI annotations and stress flags. We quantified the dura-
tion in the logarithm domain and predicted it with the softmax
layer in the model. The model parameters were estimated using
cross entropy criteria. The model was first pre-trained on a large
multi-speaker corpus and then fine-tuned on the target dataset.

3.3. Acoustic modeling

Fundamental frequency (F0), 41 dimensional mel-cepstra (M-
CEP), band aperiodicity (BAP) were adopted as the acoustic

Figure 3: Framework of the autoregressive duration model.

features. An LSTM-RNN model was used to model the acous-
tic features. Conventional LSTM-RNN based acoustic model
suffers from the over-smoothing problem due to the MSE train-
ing criteria, leading to degraded speech quality. To alleviate this
problem, we adopted generative adversarial network (GAN) as
a regularizer for the LSTM-RNN acoustic model. The frame-
work of the acoustic model is shown in Figure 4.

Figure 4: Framework of the acoustic model.

The input context feature was fed to the LSTM-RNN (the
generator) acoustic model to generate F0, BAP, and MCEP. The
MCEP was then transformed to the Mel spectral envelope (SPE)
space by discrete cosine transform (DCT). The natural MCEP
was also transformed to SPE by DCT. A discriminator was used
to discriminate the generated SPE and natural SPE. The dis-
criminator was trained to best discriminate the two inputs, i.e.
the discriminator loss of GAN. The generator was trained in a
multi-task fashion, composed of the traditional MSE loss and
the generator loss of GAN. Least square GAN (LSGAN) was
chosen as the criteria for GAN training.
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Figure 5: The flowchart of waveform generation by WaveNets.
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Figure 6: Boxplot of naturalness scores of each submitted sys-
tem for all listeners.

3.4. WaveNet-based neural vocoder

In the generation phase of the conventional vocoder-based
speech synthesis system, the quality of synthesized speeches is
degraded due to two major factors. They are the lack of phase
prediction and the artifacts caused by vocoder synthesizer re-
spectively. In order to address these two problems, WaveNet
based neural vocoder is proposed for waveform generation in-
stead, which greatly improves the quality of synthetic speech.
WaveNet is a neural autoregressive generative model that mod-
els waveform directly. The WaveNet based vocoder is realized
by the use of conditional WaveNet, in which acoustic feature
is set as the conditional input to guide waveform generation.
Given a sequence of waveform X = {x1, x2, ..., xt}, the joint
probability of all these samples is represented as follows:

p(x|h;θ) =
T∏

t=1

p(xt|x1, x2, ..., xt−1,h;θ) (1)

Where h is the acoustic feature vector, θ is the parame-
ter set of this model. p(xt|x1, x2, ..., xt−1,h;θ) denotes the
long range relationship among waveform samples. In WaveNet,
it is modelled with the use of a stack of dilated causal con-
volutional layers. In our system, we adopted this WaveNet
based neural vocoder for waveform generation. The acoustic
feature used was the joint feature vector of Mel-cepstrum, F0
and the u/v decision. Besides, we made three improvements
to the usage of the basic WaveNet model in order to enhance
synthetic speech quality. Firstly, we modelled the samples with
a single variance-bounded Gaussian distribution introduced in
ClariNet[31], which could relieve the quantization noise in syn-
thetic speeches brought by previous categorical distribution.
The mean µt and variance σt of each audio sample distribu-
tion are predicted by model conditioned on the samples at all
previous time-steps and the current acoustic feature:

µt, σt =WaveNet(xt|x1, x2, ..., xt−1;h)

p(xt|x1, x2, ..., xt−1;h) = N(µt, σt)
(2)
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Figure 7: Boxplot of similarity scores of each submitted system
for all listeners.

Secondly, the model was trained with an initialization of
a pre-trained multi-speaker model in order to improve training
stability. The training process of this multi-speaker model and
the model adaptation process were performed similar to those
in [32]. Finally, as we found that 16kHz WaveNet could gen-
erate better low frequency harmonic than 24kHz WaveNet, we
trained two WaveNets with different sample rates(16kHz and
24kHz) and generated the final 24kHz waveforms by combin-
ing the generated waveforms of these two. The generation pro-
cedure was shown in Figure 5. Specifically, a piecewise lin-
ear combination was used to obtain the concatenated amplitude
spectra.

As the WaveNet architecture in [33], we adopted 24 dilat-
ed convolution layers, grouped into 4 dilation cycles, i.e., the
dilation rate of layer k(k = 0, 1, ..., 23) is 2k(mod6). The fil-
ter width is 2 for 16kHz WaveNet, and 3 for 24kHz WaveNet.
The lower bound variance is -10(in log scale). The model is
optimized with Adam algorithm.

4. Evaluations
In this section, we will present the official evaluation results of
our system. Our system identifier is M. There are 25 system-
s, including 1 benchmarks and 24 submitted systems, plus the
natural speech were evaluated. System Z is an unit selection
system [16] for comparison. The identifiers for the benchmark
systems and our system are:

• A: Natural speech

• B: Benchmark merlin

• M: Our system

• Z: IIM-USTC system

4.1. Naturalness test

Figure 6 shows the boxplot of mean opinion scores(MOS) of
each system on naturalness. Our system achieved MOS of 4.5,
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Figure 8: Pinyin (without tone) Error Rate (Paid Listeners).

The results indicate that our system outperforms all the other
participants on naturalness. Besides, Wilcoxon signed rank tests
show that the difference between our system and any other par-
ticipant system on naturalness is significant. The score of 4.5 is
very high in history of Blizzard Challenge naturalness test.

4.2. Similarity test

Figure 7 presents the boxplot MOS of each submitted system
on similarity. Our system M achieved a mean opinion similarity
score of 4.1. The socre is highest in all submitted systems, but
the difference is not significant between our system and system
S and Z. As we know, system Z is the same unit selection system
as last year’s best system on similarity. This shows that our
proposed parametric waveform modeling system performs as
well as unit selection system in similarity comparing. This may
be related to the poor quality of the audio copus.

4.3. Intelligibility test

As shown in Figure 8 and 9, the Pinyin error rate (PER) of our
system is 9.8%and the Pinyin with tone error rate (PTER) is
10.7%. The lowest PER score is 8.7% of system N. but Wilcox-
on signed rank tests indicate that the difference is not significant
compared our system to system N.

5. Conclusions
This paper presented the details of building the USTC sys-
tem for the evaluation of Blizzard Challenge 2019. We built
a parametric system that modeling speech waveforms. a BERT
based models were used in our system for front-end text pro-
cessing. An autoregressive LSTM model was used for dura-
tion modeling, and an LSTM-RNN model was used to model
the acoustic features. Then, we adopted a generative adver-
sarial network (GAN) as a regularizer for the LSTM-RNN a-
coustic model, to relieve the over-smoothing in acoustic model-
ing. In order to break the constraint of traditional mel-cepstrum
vocoder, a WaveNet based neural vocoder was utilized to model
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Figure 9: Pinyin (with tone) Error Rate (Paid Listeners).

speech waveforms from acoustic feature. The effectiveness of
our system is verified by official evaluation results. Our system
achieved an extremely well performance and surpassed system
Z which used unit selection method.
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