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Abstract
The paper presents the NUS-HLT text-to-speech (TTS) system
for the Blizzard Challenge 2020. The challenge has two tasks:
Hub task 2020-MH1 to synthesize Mandarin Chinese given 9.5
hours of speech data from a male native speaker of Mandarin;
Spoke task 2020-SS1 to synthesize Shanghainese given 3 hours
of speech data from a female native speaker of Shanghainese.
Our submitted system combines the word embedding, which is
extracted from a pre-trained language model, with the E2E TTS
synthesizer to generate acoustic features from text input. Wav-
eRNN neural vocoder and WaveNet neural vocoder are utilized
to generate speech waveforms from acoustic features in MH1
and SS1 tasks, respectively. Evaluation results provided by the
challenge organizers demonstrate the effectiveness of our sub-
mitted TTS system.
Index Terms: speech synthesis, text-to-speech, Blizzard Chal-
lenge

1. Introduction
Blizzard Challenges have been held since 2005 to promote the
research techniques in building corpus-based speech synthe-
sis systems and provide a common platform with the neces-
sary data [1]. This year Blizzard Challenge has two tasks: 1.
Hub task 2020-MH1 (MH1) to synthesize Mandarin Chinese
given 9.5 hours of speech data from a male native speaker of
Mandarin; 2. Spoke task 2020-SS1 (SS1) to synthesize Shang-
hainese given 3 hours of speech data from a female native
speaker of Shanghainese.

Various techniques have been proposed for text-to-speech
(TTS) [2, 3] generation: concatenative speech synthesis [4, 5]
and statistical parametric speech synthesis [6, 7, 8] are widely
studied in the past decades. For concatenative speech synthe-
sis, small speech segments are selected from the database and
then stitched to construct a synthesized speech. Although it is
able to produce high quality synthesized speech, the bound-
ary artifacts remain a key issue to be addressed. Statistical
parametric speech synthesis is another popular method, which
parametrizes speech signals into acoustic features. Different
modeling approaches have been applied to map the text infor-
mation to the acoustic features. In the statistical parametric
method, a vocoder, such as STRAIGHT [9] and WORLD [10],
is employed to construct waveform from the generated features
by the acoustic model. While the prosody is predicted by the
duration model. Owing to its high flexibility and the advance
of deep learning modeling techniques, the parametric method
gains adequate interest in current TTS research field.

Recently, the sequence-to-sequence (seq2seq) models are
proposed [11]. They learn to align the input linguistic sequence
to the acoustic representation through the attention mechanism,

which effectively refrains from possible alignment errors. Be-
sides, such frameworks own a unified, entirely neural network
architecture, that is desirable to model the complex feature
transformation in a simple and flexible way [12]. Several end-
to-end (E2E) TTS systems, e.g., Tacotron [13], Char2Wav [14],
DeepVoice [12, 15], have demonstrated their superiority over
the conventional structures.

Research has shown that injecting linguistic information at
the input step can help the model to better utilize the acoustic
features [16]. Inspired by the previous work, we include word
embedding that is obtained from a pre-trained language model
alongside with acoustic features to enhance the model. Further-
more, by fine-tuning the general-domain language model on a
smaller task-domain dataset, it can alleviate the low-resource
problem [17] posed by the Shanghainese language. Apart from
modeling the linguistic to acoustic feature mapping, the vocoder
is the other important functional block in a TTS system. To
improve the synthesized speech quality, neural vocoders like
WaveNet [18] and WaveRNN [19] are adopted to replace a con-
ventional parametric vocoder.

Based on the recent appealing approaches, we adopt the
recent E2E TTS architecture [20] to predict the acoustic fea-
tures, and we adopt WaveRNN [19] and WaveNet [18] neural
vocoders to generate waveform in time-domain from the pre-
dicted acoustic features.

This paper is organized as follows: Section 2 describes our
system implementation. Section 3 demonstrates and discusses
the evaluation results. Last, Section 4 concludes this paper.

2. System Architecture
2.1. End-to-End TTS Synthesizer

Our system is illustrated in Figure 1. We base our model on
Tacotron2 [20], a seq-to-seq model using recurrent neural net-
work (RNN). It is composed of an encoder and an attention-
based decoder.

The encoder aims to generate textual representations from
input sequences. We convert character sequences into phone
sequences for MH1, while we use the provided phone sequences
for SS1. Each phone is represented as one phone embedding
via the embedding layer. We concatenate the tone information
by tone embedding, and phone embedding together. Then we
pass the concatenated representation to 3 convolutional layers,
followed by a bi-directional LSTM layer to generate the encoder
output.

The encoder output is attended by the attention-based de-
coder, which is a RNN-based network that predicts acoustic
frames using encoder output. The attention mechanism is to
compute a fixed-length context vector to provide additional in-
put to the decoder network. Location-sensitive attention is able
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Figure 1: An illustration of model architecture

to reduce the frame prediction errors[21]. Guided-attention loss
[22] is implemented to boost the alignment convergence. The
decoder input is passed through 2 layer pre-net and 2 LSTM
layers, followed by a linear projection layer to predict acoustic
features. The residual structure of a 5 layer convolutional post-
net improves the general reconstruction. The stop token symbol
is to predict when the model should stop during inference.

To provide an additional linguistic feature, which may ben-
efit tokens sharing the same linguistic function to carry simi-
lar prosody, we utilize word embedding trained from large con-
versational domain corpora [23, 24]. The pre-trained language
model [25] is able to process both English and Chinese text,
of which only the Chinese word embedding is extracted from
the embedding layers. To adapt to the task domain we fine-
tune [26, 27] the language model using the task dataset for SS1,
while we fine-tune the language model using [28] for MH1. For
the MH1 task, we obtain the contextualized embedding from
the 12 embedding layers of the language model. The concate-
nated embedding is projected into a 512-dim vector. For the
SS1 task, since there is a lack of large Shanghainese text corpus
for a proper fine-tuning, we adopt only the static embedding
layer from the pre-trained language model, resulting in a 256-
dim word embedding. These serve as an additional input to the
end-to-end TTS model, similar to [29, 30, 31].

We adopt the residual encoder structure, proposed in [32],
and we inject the word embedding to encoder output, the same
as [31]. For MH1 task, the target acoustic feature is 80-dim log-
mel spectrogram, extracted using 12.5ms frame shift and 4096-
point Fourier transform, while 1024-point Fourier transform for
SS1 task.

2.2. Neural Vocoder

For task MH1, WaveRNN [19] neural vocoder is utilized in
our system owing to its efficiency in generating high-quality
speech waveform. The WaveRNN is trained to map 80-dim
mel-spectrogram input features to 10-bit waveform encoded by
the µ-law. The WaveRNN model is mainly composed of a pre-
processing network, two GRU layers, and an output layer. The
preprocessing network is to upsample the mel-spectrogram to
match the time-domain speech waveform resolution with the
factor of [6, 10, 10]. Two GRU layers and the output linear
layer all have 512 hidden neurons. The batch size is 32, and the
learning rate is set to 1e−4. We trained the network for 1,000
epochs. WaveRNN is adopted for this task due to its fast wave-
form generation capability as there are a number of samples to
be synthesized to within limited challenge time.

While for task SS1, WaveNet [33] neural vocoder is em-
ployed. WaveNet vocoder is also used to generate raw au-
dio waveform from the 80-dimensional mel-spectrogram. The
WaveNet vocoder contains 24 dilated convolution layers, and
the k-th layer had a dilation size of 2mod(k−1,6), where mod(·)
was the modulo operation. The output of the dilated convolution
layers and that of the skip channel had 30 and 128 dimensions,
respectively.

3. Result
3.1. Challenge Participants

In total, there are 16 teams submitted their results for the MH1
task, which are denoted from B to Q. While 8 of them, system
C, E, I, K, L, M, N, and O, additionally participated in the SS1
task. For both tasks, System A is natural speech. Our system is
indicated as E.

3.2. Evaluation metrics

Subjective listening tests were designed to perceptually evalu-
ate the synthetic samples for all systems in both MH1 and SS1
tasks. For the SS1 task, three sets of experiments were con-
ducted to evaluate the synthetic samples, including naturalness,
similarity, and intelligibility. While for the MH1 task, there is
one more set of experiments that is conducted to evaluate the
naturalness of synthetic paragraph. The detailed results will be
presented in the next sections.

3.3. Perceptual evaluation for MH1 task

3.3.1. Naturalness of sentence

These sets of experiments were conducted to evaluate the nat-
uralness of the synthetic sentences. The listeners were asked
to assign a score to represent how natural or unnatural of the
speech sample, where a score 1 indicates the speech sample
is ”Completely Unnatural”, while a score 5 indicates that the
speech sample is ”Completely Natural”.

Figure 2 shows the boxplot of mean opinion scores (MOS)
of the naturalness for synthetic sentences. Our system obtains
an average MOS of 3.9 with 1.08 standard deviation and ranks
at 6th position. While, as a reference, the natural speech has a
score of 4.7 with 0.65 standard deviations.

3.3.2. Naturalness of paragraph

These sets of experiments were conducted to evaluate the nat-
uralness of the synthetic paragraphs. Listeners should choose
scores for one whole paragraph in seven aspects, e.g. over-
all impression, pleasantness, speech pauses, stress, intonation,
emotion, and listening effort, e.g. 10 means ”bad”, while 50
means ”excellent”.

Figure 3 shows the boxplot of overall impression scores for
the synthetic paragraph. Our system obtains an average score
of 43 with 9.3 standard deviation and ranks at 5th position. As
a reference, the average score of natural speech is 49 with a
standard deviation of 7.8.

3.3.3. Similarity

During the experiments, listeners were asked to judge how simi-
lar the synthetic speech sounded to the reference sample of natu-
ral recordings with a score, which is scaled from 1 (Sounds like
a totally different person) to 5 (Sounds like exactly the same
person).

45



740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740 740n

A O I L D M E B C P K F N J H G Q

1
2

3
4

5
Mean Opinion Scores (naturalness) − All listeners

System

S
co

re

Figure 2: Boxplot of naturalness scores of sentence synthesis
for all listeners. E is our system.
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Figure 3: Boxplot of overall impression scores of paragraph
synthesis for MH1 task. E is our system.

Figure 4 shows the boxplot of MOS of the speaker simi-
larity. Our system obtains an average MOS of 3.8 with 1.16
standard deviation.

3.3.4. Intelligibility

The intelligibility evaluation of the MH1 task is performed by
dictation, where listeners were asked to write down the contents
they heard from the given samples. The performance is evalu-
ated by calculating the Pinyin error rate with tones.

Figure 5 shows the Pinyin with tones error rate (PTER). It
is observed that our system did not perform well in this eval-
uation with a 20.9% PTER and 0.21 standard deviation. As a
reference, the natural speech obtains a 7.4% PTER and 0.13
standard deviation. An in-depth investigation could be consid-
ered as a research direction and a possible improvement in our
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Figure 4: Boxplot of similarity scores of each submitted system
for MH1 task. E is our system.

future work.

A O I L D M E B C P K F N J H G Q

0
5

10
15

20
25

370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370 370n

Pinyin Error Rate with Tones − All listeners (INT data)

System

P
T

E
R

 (
%

)

Figure 5: Pinyin Error Rate with Tones for MH1 task. E is our
system.

3.4. Perceptual evaluation for SS1 task

3.4.1. Naturalness

A 5-scale MOS is used for naturalness evaluation of SS1 task,
e.g. 1 indicates the speech sample is ”Completely Unnatural”
and 5 indicates that the speech sample is ”Completely Natural”.
Figure 6 shows the boxplot of MOS of the naturalness for syn-
thetic sentences. Our system achieves a mean MOS of 3.6 and a
standard deviation of 1.06. This result is ranked at second place.
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Figure 6: Boxplot of naturalness scores of each submitted sys-
tem for SS1 task. E is our system

3.4.2. Similarity

A 5 scale MOS is used in similarity evaluation, where 1 means
the synthetic sample sounds like an entirely different person,
and 5 indicates the synthetic sample sounds like exactly the
same person. Figure 7 shows the boxplot of MOS of the similar-
ity for synthetic speech. It is observed our system outperforms
all the submitted systems and obtains a mean MOS of 4.1 and
standard deviation of 1.0.
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Figure 7: Boxplot of similarity scores of each submitted system
for SS1 task. E is our system

3.4.3. Intelligibility

Different to the intelligibility evaluation of MH1 task, in this
test, each listener should give a score to describe how intelligi-
ble or unintelligible of the speech sample. The score is scaled
between 1 (Completely unintelligible) to 5 (Completely intelli-

gible). Figure 8 shows the intelligibility scores for all submitted
systems. Again, our system achieves a mean MOS of 4.0 and
a standard deviation of 1.14. This result is just worse than the
system ”I” and ranked at second place.
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Figure 8: Boxplot of intelligibility scores of each submitted sys-
tem for SS1 task. E is our system

4. Conclusions
This paper presents the NUS-HLT system submitted for Bliz-
zard Challenge 2020. We built a TTS framework that first trans-
forms text input to acoustic features combining with the word
embedding and an end-to-end TTS synthesizer, followed by a
neural vocoder to construct the audio waveform. The effective-
ness of our system is successfully confirmed by the official eval-
uation results.
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