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Abstract

In this paper, we describe the SCUT text-to-speech synthesis
system for the Blizzard Challenge 2020 and the task is to build
a voice from the provided Mandarin dataset. We begin with our
system architecture composed of an end-to-end structure to con-
vert acoustic features from textual sequences and a WaveRNN
vocoder to restore the waveform. Then a BERT-based prosody
prediction model to specify the prosodic information of the con-
tent is introduced. The text processing module is adjusted to
uniformly encode both Mandarin and English texts, then a two-
stage training method is utilized to build a bilingual speech syn-
thesis system. Meanwhile, we employ forward attention and
guided attention mechanisms to accelerate the model’s conver-
gence. Finally, the reasons for our inefficient performance pre-
sented in the evaluation results are discussed.

Index Terms: Blizzard Challenge 2020, speech synthesis, end-
to-end speech synthesis, bilingual speech synthesis

1. Introduction

Since 2005, the Blizzard Challenge has been organized annually
to practically verify the effectiveness of research techniques for
speech synthesis. The Blizzard Challenge 2020 has two tasks:
(1) Hub task to build a speech synthesis system with the pro-
vided Mandarin data. (2) Spoke task to build a speech synthesis
system with the provided Shanghainese data. And we select the
former as our task.

The unit selection and statistical parametric speech synthe-
sis (SPSS) have been widely applied in the speech synthesis
field in the last decade. For the phoneme sequences predicted
from the input texts, the unit selection system selects the ap-
propriate waveform fragments for each phoneme from a suf-
ficiently large speech database and concatenates them into the
target speech[1, 2, 3]. By using real speech segments, the unit
selection system can produce highly natural speech. However,
it is hard for the unit selection system to eliminate the disconti-
nuity between speech fragments, resulting in incoherent speech.
Also, constructing a database that covers diverse phonetic and
prosodic information is costly. Unlike the concatenative ap-
proach, the HMM-GMM based system[4], a representative of
SPSS, aims to map the text space to the acoustic space and
achieve fluent pronunciation on arbitrary text. Since the HMM
model is a short-term probability statistical model, although the
synthesized speech is smooth, the intonation is rigid and unnat-
ural.

In recent years, the SPSS based on deep neural networks
(DNN) have became a hot research topic. Approaches such as
[5, 6] have shown that the DNN can be utilized to overcome
the limitations of conventional HMM-based systems. To fur-
ther simplify the structure of the speech synthesis system, end-
to-end speech synthesis systems have been proposed in the past
few years, such as Tacotron 1[7], Tacotron 2[8], Deep voice
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2[9], and Clarinet[10]. These end-to-end systems mainly have
an attention-based sequence-to-sequence framework, which di-
rectly converts textual embedding into acoustic features. Fi-
nally, a back-end vocoder is employed to generate the wave-
form. The end-to-end model can easily encode prosodic in-
formation, thereby implementing a controllable and expressive
text-to-speech system[11, 12, 13, 14]. Due to the superiority of
the end-to-end architecture, we adopt it as the backbone of our
system for the Blizzard Challenge 2020.

As for vocoder, the Wavenet[15] with autoregressive struc-
ture has yielded extreme performance in waveform restoring,
despite its slow sampling speed. Following the significant
progress made by WaveNet, researchers have proposed vari-
ous DNN-based vocoders to take account of both speed and
quality of their productions, such as Fast WaveNet[16], Paral-
lel WaveNet[17], WaveRNN[18], and WaveGlow[19]. For the
competition, we select WaveRNN as the vocoder to maintain
speech quality under limited computing resources.

The rest of this paper is organized as follows: We describe
our system architecture in section 2 and the experiment details
will be presented in section 3. Then, section 4 shows the eval-
uation results and investigates the shortcomings of our system.
Finally, we conclude our paper in section 5.

2. System Description
2.1. Overall Architecture

As shown in Figure 1, our system uses the same encoder-
decoder architecture as Tacotron 2 does, followed by a back-end
vocoder to achieve high-fidelity speech synthesis. Function-
ally, the encoder extracts linguistic features from phoneme se-
quences. Then the frame-level mel-spectrogram, a time-aligned
acoustic feature, is output by decoder, which consumes the his-
torical embedding and the alignment context supplied by the
attention mechanism in each step. Finally, the vocoder restores
the mel-spectrograms to waveforms. The method has been re-
peatedly verified to be easily trained and generate high-quality
acoustic features. Since the Mandarin dataset provided by the
Blizzard Challenge committee contains not only Chinese sen-
tences, but also some English words and letters, we hope to
build a speech synthesis system that can support both Chinese
and English. To support bilingual speech synthesis, however,
the above method needs modification. First, we implemented a
front-end module that can process both Mandarin and English
characters. Then a two-stage training with different corpora is
performed in the training phase, so that we can uniformly em-
bed Mandarin and English texts and generate bilingual acoustic
features.
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Figure 1: Overall Architecture of our system
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2.2. Data

The Blizzard Challenge committee provides a 9.6-hour Man-
darin dataset of a single male speaker including 4365 sentences
and corresponding transcription. The audio has been segmented
and the transcription has also been normalized in the dataset,
Thus, we can use it as training corpus directly without compli-
cated pre-processing. To improve the performance of the speech
synthesis system, the Databaker dataset[20], which has 12-hour
record of a single female speaker including 10000 Mandarin
sentences, is introduced as external data for training. In addi-
tion, to build a bilingual speech synthesis system, the English
corpus is indispensable to English pronunciation training, we
also chose the 24-hour LJ Speech English dataset[21] recorded
by a single female speaker for training. All audios in the data set
are resampled to 22.5 kHz and their mel-spectrograms are ex-
tracted using the librosa library[22]. Also, the transcriptions are
processed by the front-end module before entering the encoder
module.

2.3. Front-End processing

The front-end processing module in our system consists of two
components: (1) Grapheme to phoneme(G2P) module to con-
vert Mandarin or English characters to phoneme sequences. (2)
Prosody prediction model for extracting prosodic information
from Mandarin texts and it allows us to generate more expres-
sive speech with a controllable style.

2.3.1. Grapheme to phoneme

This module aims to organize texts into phonemes, which are
the smallest units of speech that make one waveform sound dif-
ferent from another. For Mandarin characters, the phonemes are
named Pinyin, which can be divided into three parts: initial, fi-
nal, and tone. The tones always function on the finals, and num-
bers 1 to 5 are used to denote different Mandarin tones. Then
plain initials and variable-tonal finals are combined to form the
pronunciation of Mandarin characters. Therefore, in this sys-
tem, we also give the initial a tone of 0 to indicate its flat tone.
The Pypinyin toolkit we used in the Pinyin sequence extract-
ing may output inaccurate labels for polyphonic characters, so
manual correcting is required. For English texts, our G2P mod-
ule maps English words into phonemes by consulting the BEEP
pronunciation dictionary[23], and “e_" is inserted in front of the
English phonemes as a mark to distinguish Pinyin and English
phonemes. We also mark the tones of English phonemes as 6
for unified representation. Table 1 presents the transformation
from texts to phoneme sequences.
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2.3.2. Bert-based prosody prediction

It is common sense that highly natural speech usually involves
intricate prosodic information relevant to the corresponding
texts. However, the end-to-end speech synthesis system will
inflexibly follow the implicit prosodic pattern derived from the
training data if it does not model the mapping between the text’s
latent prosodic information and acoustic target. Under these
conditions, we introduced a prosody prediction model to explic-
itly specify the prosody annotation of the input texts. Since the
English text in the Blizzard Challenge 2020 dataset usually ap-
pears in the form of single letters or words while the Mandarin
characters account for the majority of sentences, our prosody
prediction model is only responsible for Mandarin texts’ pre-
diction.

In Mandarin, the prosody structure of a sentence includes
syllable, prosodic word, prosodic phrase, and intonational
phrase, which are marked with “#0” to "#4” in the texts. At
the same time, "#5” is the label for English words in the texts.
For example, the corresponding labeled sequence of the tran-
script “ATR A E G & —FIREHERE s "A#5T#5 &
#0 G #0 ) #1 5 #0 J5 #2 2 #0 — #0 5% #1 I 40 & #0
B #1 4 #0 & #0 BF #4”. Since the prosody prediction can be
regarded as a sequence tagging task, the Bert-based BiLSTM-
CRF model, which is widely employed in end-to-end sequence
tagging, is ideal for prosody prediction tasks.

The first component of our prosody prediction system is a
pre-trained language representation model, namely BERT[24].
The BERT is trained in massive unlabeled corpus and it pro-
vides reasonable embedding for texts. The next module is a
256-unit bidirectional long short term memory (BLSTM) layer
to construct the interaction among the characters in sentences.
And finally, as same as [25], a conditional random field (CRF)
layer is employed to establish the relationship between the tar-
get tags. The prosody prediction process is presented in Figure
2. Relying on 10000 sentences with prosodic annotations in
the transcript of Databaker corpus, we jointly trained the pre-
trained Bert model named BERT-Base from [26] and the other
components of our model.

Instead of pushing the prosodic embedding into the decoder
module as usual, we attach the prosodic labels to phoneme se-
quences and send them to the encoder module together. The
adjustment is an adaptation to the two-stage training method
which will be described below. The detailed front-end process
is shown on Table 1.

Table 1: An example of front-end pre-processing
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Figure 2: The process of BERT-Based BLSTM-CRF prosody
prediction

2.4. End-to-end speech synthesis model
2.4.1. Encoder

When the phoneme sequences output by the front-end module
are transmitted to the encoder module, it will be first trans-
formed into one-hot embedding based on the phonemes set we
used. Then a linear layer is utilized to project the one-hot vec-
tors into 512-dimensional embeddings, followed by a stack of
1-D convolution layers with 512 filters and a single BLSTM
network with 256 units in each direction. Finally, the hidden
states of BLSTM at all times are output as encoded features
which have the same length as the phoneme sequences.

2.4.2. Attention mechanism

The attention mechanism helps the decoder module to automat-
ically capture the encoded outputs that should be referenced
at each step. Since the attention mechanism takes responsibil-
ity for the alignment between input text sequences and output
acoustic features, the naturalness and coherence of generated
speech varies with the attention’s validity.

To acquire an available attention module fast, we utilize the
forward attention mechanism from [27], which contains stabil-
ity and rapid convergence. The forward attention mechanism
takes advantage of monotonic alignment from text sequences
to acoustic sequences. Intuitively, in each decoding step, the
decoder should concern either the linguistic embedding it con-
cerned in the previous step, or the next linguistic embedding
behind the embedding it concerned in the previous step. There-
fore the optimization of the attention module has a much smaller
search space and the training efficiency can be improved. We
also incorporate the guided attention loss proposed in [28],
which uses the same principle as forward attention. This loss
will strictly penalize the non-monotonic weights derived from
attention during the training phase to forcibly diagonalize the
alignment output by attention. In our experiments, these meth-
ods are indeed effective to improve the training speed.
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2.4.3. Decoder

The decoder module is an autoregressive model, which receives
the aligned content through the attention mechanism and the
output frame of the previous step, then outputs a frame of mel-
spectrogram at each time step. During this phase, the hidden
state of each step will be sent to a fully connected layer, which
is followed by the sigmoid activation and finally outputs the
probability of terminating the production. After getting the mel-
spectrogram sequence of multiple frames, the Tacotron 2 archi-
tecture also includes a post-process network to adjust the entire
sequence from a global perspective. 512 filters with batch nor-
malization, which has 5x1 kernel, are employed to compose the
presented model, followed by the tanh activations except the
last layer. When it comes to the training phase, both the mel-
spectrograms generated by the autoregressive network and the
post-process network will be involved to minimize the mean
squared error (MSE) with target mel-spectrograms.

2.5. WaveRNN Vocoder

We use WaveRNN to restore the waveform audio from the mel-
spectrograms. It has impressive sampling speed though it gen-
erates speech with less naturalness compared with WaveNet,
which is recognized as the best vocoder in the speech expres-
siveness category. The WaveRNN is designed as a single-layer
recurrent neural network with sparse parameters to deduce the
model’s complexity. It uses two 8-bit output spaces to gener-
ate the high and low parts of the final 16-bit output, in this way
the scale of the model can be further compressed. The compact
and brief framework significantly decreases the computation of
WaveRNN. However, in order to stabilize the inference and up-
grade the sound quality as much as possible, we did not use
the subscaling method in the original paper, but split the input
sequences into segments and then generate speech for each seg-
ment in parallel.

The material for training our vocoder comes from the Bliz-
zard Challenge 2020 dataset because our system is to generate
the corresponding speaker’s voice. It is worth mentioning that
the acoustic models based on encoder-decoder architecture and
the vocoder are independent of each other, so the two modules
can be trained separately.

3. Experiment
3.1. Two-stage training for bilingual speech synthesis

As mentioned above, in order to fully train a bilingual text-to-
speech system, we employ three datasets that come from differ-
ent speakers, including the Blizzard Challenge 2020 Mandarin
dataset, the DataBaker Mandarin dataset, and the LISpeech En-
glish dataset. Since our target productions should be voices
from the speaker of BC 2020 datasets, we divided the model
training into two stages, using different datasets as training ma-
terials.

Figure 3 illustrates our training process. In the first stage,
the text and mel-spectrogram pairs from the DataBaker[20]
and LJSpeech dataset are sampled to tune the encoder-decoder
model’s parameters. Because the Mandarin and English text are
unified in the font-end processing, the model can learn how to
pronounce Mandarin Pinyin and English phonemes at the same
time. In this step, the entire model must be fully trained until
it can generate fluent and natural Mandarin and English speech
because we need a fully functional encoder before the second
stage of training.



Since the first stage training releases a fully-trained encoder
module that can extract linguistic features from mixed Chinese
and English texts, we fix the parameters of the encoder module
and only employ the Blizzard Challenge 2020 dataset to fine-
tune the other parts of the model. The main purpose of this
stage is to adjust the decoder module, which finally generates
the acoustic features, to make it generate the voice of the tar-
get speaker whether it is to synthesize Mandarin or English. At
the same time, it also allows the model to learn the coherent
pronunciation between Chinese and English words in each sen-
tence.

3.2. Scheduled sampling training

In the speech synthesis based on the autoregressive model, the
output of the previous step is usually the input in the next step.
Therefore, for fast convergence, it is practical for the decoder
to acquire the real elements in the target sequence as its input
instead of the output from the previous step, and this method
is namely teacher forcing training. However, attributable to
the different distribution of training data and testing data, the
teacher forcing training will weaken the model’s robustness
while accelerating the training, so we apply scheduled sampling
training, which is widely employed in sequence-to-sequence
tasks.

The scheduled sampling method maintains a probability in-
dicating whether to use the ground truth element as input in each
step of decoding, and the probability can be reduced over time
in some way, such as linear decay and exponential decay. In that
way, the convergence will speed up in the early stage of train-
ing because a large number of ground truth data can be received
as input. As the training progresses, the decoder will gradually
consume the generated elements to ensure its robustness. In our
setting, we let the probability decay linearly from 1 to O.

First step Second step

Mel-spectrogram

DataBaker
& LISpeech

BC2020
Dataset

Encoder

Text Annotation

Front-end module Front-end module

Figure 3: Two-stage training process.
modules are grayed out.

The parameter-fixed

3.3. Synthesis

Apparently, an autoregressive speech synthesis model is power-
less to process excessively long texts because of its long-term
dependency issue. Meanwhile, a really short input text results
in lowly expressive speech because the system is incapable of
expressing plentiful prosodic information due to lack of context.
To alleviate these problems, we segment the texts according to
symbols such as commas and periods before sending the texts
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Figure 4: Mean Opinion Scores (naturalness)

to our text-to-speech system, and we also ensure that the mini-
mum segment has at least 6 characters. Finally, after the speech
of each segment is synthesized separately, we will concatenate
them together as the output of the entire paragraph.

4. Results
4.1. Subjective evaluation

The subjective evaluation assesses the system from three as-
pects: naturalness, similarity, and Pinyin error rate with tones
(PTER). In the evaluation of naturalness and similarity, the
Mean opinion score (MOS) ranges on a scale from 1 (bad) to
5 (excellent) to express the quality of generated speech. As for
the PTER, it reports the intelligibility of the synthetic speech
of the Intelligibility of sentences (INT) section which generates
speech for random combinations of Chinese phrases.

The results composed of MOS (naturalness), MOS (simi-
larity to original speaker), and PTER are presented in Figure 4,
Figure 5, and Figure 6 respectively. Our system is denoted by
letter Q in the evaluation and obviously, it performs poorly in
all aspects. In terms of the naturalness of generated speech, we
only got an average MOS of 2.6, which is far lower than the per-
formance of other teams. Also, our PTER is 17.1%, which can-
not meet the requirements of a high intelligibility speech syn-
thesis system. As for the voice similarity to the original speaker,
it is also weakened because of the unclear output speech, which
is caused by the imperfect vocoder.

4.2. Discussion

After system analysis, we attribute the system’s fault to our two-
stage training method and the vocoder module.

In the second stage of training, the parameters of the en-
coder are constant and we hope that the encoder is stable enough
to extract certain features for bilingual text. Nevertheless, the
coherence between characters and words of our target speech,
which comes from the Blizzard Challenge 2020 corpus, is dif-
ferent from the two datasets we apply in the first-stage train-
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ing, so the encoder should also be fine-tuned in the second
stage. Furthermore, the parameter-fixed encoder also harms the
effect of the attention mechanism, which results in confusing
pauses in speech. What’s worse, the Blizzard Challenge 2020
dataset does not contain all the Mandarin and English phonemes
we need, so it may not completely convert the voice of all
phonemes to the target speaker. As for the vocoder, WaveRNN
uses a lightweight structure to reduce the amount of calculation,
thereby increasing the sampling speed, but at the same time sac-
rificing the fidelity of the restored waveform. Finally, since we
generate speeches for each subsentence divided from the input
text separately and concatenate them as the whole sentence’s
speech, our approach also suffers from the same coherence is-
sue between speech segments as the unit selection system.

5. Conclusions

In this paper, we have presented the SCUT bilingual speech
synthesis system based on the Tacotron 2’s end-to-end frame-
work. For code-switched synthesis, we adjust the preprocess-
ing module and introduce a two-stage training method. Also,
our vocoder also achieves efficient sampling without compro-
mising their quality as much as possible. Although our perfor-
mance is ineffective and the synthesized voice is not smooth
enough naturally enough as illustrated in the evaluation results,
the challenge is an impressive experience for us who partici-
pated for the first time. In future work, we will investigate
building a high-fidelity speech synthesis system with various
prosodic styles based on end-to-end architecture.
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