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Abstract
Our entry to the Blizzard 2021 builds on the training of

Spanish and mixed Spanish/English models using a Conformer-
based FastSpeech 2 system. The mixed Spanish/English models
were used for the task of synthesising Spanish texts containing a
small number of English words. We used external public multi-
speaker Spanish and English datasets to build our models. The
main reasons were to avoid problems of data scarcity using the
relatively small (around 5 hours long) single speaker Spanish
dataset provided by the organisers of the Blizzard, and to be
able to build a mixed Spanish/English synthesis model. Our
assumption was that we could model well the target Spanish
speaker voice in the multi-speaker model and obtain an high-
quality Spanish voice. Unfortunately our models produced syn-
thetic speech with quality lower than expected, both in speaker
similarity and naturalness. The synthetic voices sounded par-
ticularly monotonic, which could have a strong effect on the
results. The complexity of consecutively fine-tuning models ob-
tained using multiple datasets to achieve the final voice models
could have contributed to inaccurate modelling of the prosody
and eventually the speech spectrum characteristics. Another
possible reason is that the multi-speaker Spanish dataset we
used only included 4 speakers, which may not have been suf-
ficient. We are conducting further analysis to better understand
the reasons for the output quality of the system.
Index Terms: multi-speaker speech synthesis, FastSpeech,
code-switching

1. Introduction
In the Blizzard Challenge 2021, participants had to build a syn-
thetic voice using the shared training dataset. This data con-
sisted of around 5 hours of European Spanish speech from one
native female speaker. The speaking style is read speech and
the text transcriptions were included in the data.

The challenge was divided into two tasks:

• Hub task (SH1): To build a voice from the provided Eu-
ropean Spanish data to synthesise texts containing only
Spanish words

• Spoke task (SS1): To build a voice from the provided Eu-
ropean Spanish data to synthesise Spanish texts contain-
ing a small number of English words in each sentence

Participants were allowed to use external data in addition to
the provided audio files. In our entry, we used external data to
obtain a pre-trained model for Spanish, which is described later.

For our team, this was the first time we built a synthetic
voice for Spanish. The Blizzard challenge was an opportunity
for us to test building a synthetic voice in a new language with
minimal human work hours, given our time constraints. An-
other motivation for our participation was the novel task to syn-
thesise Spanish texts with English words. We have not done

experiments with building synthetic voices to address this chal-
lenge of code-switching before and this task was a good oppor-
tunity for us to try to tackle this problem.

The Text-to-Speech Synthesis (TTS) method we used for
the Blizzard is based on deep neural networks. More specif-
ically, we chose to use a non-autoregressive sequence-to-
sequence model with multi-head attention, a Conformer-based
[1] FastSpeech 2 [2] architecture with pitch prediction akin to
Fastpitch [3]. We chose this model because it showed to be ro-
bust and provided good quality in past experiments we did with
other languages. From our past experiments, auto-regressive
models can provide more natural sounding speech than non
auto-regressive ones but they showed to be less reliable due to
problems in learning the attention and consequently producing
poorer quality when it fails to align properly. In this work, we
also used ancillary Transformer TTS [4] models as a source of
alignment information for the duration prediction of the non-
autoregressive models.

Our approach was focused on leveraging previous work
wherever possible and avoiding to train new models from
scratch. Thus we tried to benefit from knowledge transfer in
the form of transfer learning and multi-speaker modelling. To
synthesise bilingually, we chose to apply a speaker embedding
learned on the Spanish subset of the data on the English inputs.
For modelling pronunciation we used the phoneme based to-
kenisation provided by the VCTK recipe of ESPnet [5] for the
English data but used character based tokenisation for Spanish.
Character tokenisation worked well in earlier experiments on
Italian which has similarly straightforward letter-to-sound rules.
Our final model for task SS1 was trained on multi-speaker Span-
ish and English data with mixed input token inventories.

Another choice we made in building the synthesis models
in this work was to use external data, for both the SH1 and SS1
tasks. The reason was to tackle the problem of building a syn-
thetic voice with a relatively small shared dataset. In both tasks
we used publicly available datasets of audiobooks with multi-
ple speakers. For task SS1, using external English data was
particularly important because the shared dataset only included
Spanish data. Another approach could have been to go on an
extensive search for an English speaker with similar voice char-
acteristics and use single-speaker English data that is maximally
compatible with the Spanish recordings. We chose to avoid this
overhead. An important effect of using multi-speaker data is
that we needed to take particular care of modelling speaker em-
bedding well, in order to be able to synthesise a voice as similar
as possible to the target female Spanish speaker.

The evaluation experiment conducted by the organisers was
similar to the format of recent Blizzard Challenge events. It in-
cluded sections to evaluate speech naturalness and speaker sim-
ilarity using Mean Opinion Scores (MOS), as well as sections
to evaluate intelligibility using the Word Error Rate (WER), in
which participants are asked to play the stimuli and have to type



the words that they heard. A difference in the evaluation exper-
iment compared to previous years was the part to evaluate the
Acceptability (MOS scores) of listeners to synthesis of Spanish
text with English words (relative to task SS1).

The paper is organised as follows. Section 2 describes the
external dataset used to build the pre-trained model and the data
made available by organisers to build the Spanish voice. Our
systems for tasks SH1 and SS1 are explained in Section 3. The
results of the evaluation are presented in Section 4 and discussed
in Section 5. Finally, the conclusions are given in Section 6.

2. Databases
We used external data, because the data provided for the Bliz-
zard is small comparatively with the size of datasets commonly
used to produce high-quality voices with neural TTS models.
For example, a typical dataset used in the literature to report
results of TTS evaluation on single speaker dataset is LJSpeech
(US English), which is around 24 hours long. However, we have
not experimented to build a synthetic voice using the shared
Spanish data only to verify the quality of a speaker dependent
model.

We used an external dataset to build a pre-trained Spanish
model for task SH1, the Spanish M-AILABS Speech Dataset 1.
It is divided into three parts: female, male, and mixed. We used
the female and male subsets that consist of 1 female speaker
(10h 37m), and 2 male speakers (55h 5m and 17h 19m). In total,
the duration of the external speech data used is approximately
83h.

We also used an external English dataset to build a mixed
English-Spanish model for task SS1, which is the CSTR VCTK
Corpus [6]. VCTK is an English Multi-speaker Corpus that
includes 109 English speakers with various accents, totaling
around 44 hours of speech data and respective text transcripts.

Please note that we also took advantage of our own pre-
trained models obtained in past experiments, in addition to the
external datasets indicated above. We used our pre-trained Ital-
ian model to warm-start training the Spanish model in task SH1
and our pre-trained English model to warm-start the training of
the multi-speaker mixed language model for task SS1. The first
was trained on a selected subset of Italian M-AILABS consist-
ing of around 20 hours of speech and the second on LibriTTS
[7].

3. System
Our systems are based on ESPnet2 [5]. They are derivations
of its Transformer [4] and FastSpeech 2 [2, 3] implementations
which use internal speaker and gender embeddings instead of
relying on externally supplied x-vectors. The Transformer mod-
els were only trained to supply alignment information for train-
ing the FastSpeech 2 models.

All models of the same type have the same hyper-
parameters, except for the number of speaker and input embed-
dings. An overview of the most important hyper-parameters
is given in Table 1. The FastSpeech 2 models also employ
sub-networks for predicting and embedding duration, pitch and
energy, which follow standard recipe hyper-parameterisation.
We used ESPnet’s variable batch size that is roughly constant
in the number of batch bins (summed input/output sequence
states) targeted at 18E+6 bins. The network was regularised

1Available at https://www.caito.de/2019/01/
the-M-AILABS-speech-dataset/

with dropout of 0.2 except for decoder pre- and post-nets which
have a dropout of 0.5.

All models used as input 80-dimensional log-mel-filterbank
features extracted from 24 kHz speech signals. The recorded
speech of the Blizzard Spanish dataset was downsampled from
48 kHz for compatibility with training voices using our pre-
trained models that were built from speech sampled at 24 kHz.
The acoustic feature extraction was done following standard
ESPNet TTS recipes. A short-time Fourier transform of 2048
points was computed from the speech signal by using a Hanning
window with 50 ms duration (corresponding to a vector of 1200
samples padded with zeros), with shifting of 12.5 ms (300 sam-
ples). The resulting magnitude spectra were warped to an 80
band mel-scale limited to 80-7600Hz, and then converted to nat-
ural logarithmic scale. All features were normalised with global
mean and variance normalisation. For FastSpeech 2 models,
from the same short-term spectra, energy was extracted as RMS
and the fundamental frequency (F0) via the DIO [8] plus Stone-
mask algorithm. Then, their mean values were taken over the
per-token frames.

Since we only used the Transformer models to generate
alignments, not to synthesise speech, we only describe the
specifics of the training process of the FastSpeech 2 models in
the next sections. The training criterion of our FastSpeech 2
models is the sum of spectral L1 loss with pitch, energy and
duration losses.

The system uses an implementation of the Parallel Wave-
GAN vocoder [9] to generate the speech waveform from the
spectra generated by the acoustic model during synthesis2. We
used a pre-trained model of the Parallel WaveGAN vocoder
made available by the author of this implementation, which was
trained on the VCTK corpus.

Table 1: System configurations. In this table, e/d stands for
encoder/decoder.

Transformer FastSpeech 2

transformer layers e/d 6/6 4/4
layer dimensions e/d 1024/1024 1536/1536
conv layer kernel size e/d n/a 7/31
conv layer filters n/a 384
self-attention heads 8 2
self-attention dimensions 512 384
src-attention heads 8 n/a
src-attention dimensions 512 n/a
pre-net layers 2 n/a
pre-net dimensions 256 n/a
post-net layers 5 5
post-net conv kernel size 5 5
post-net conv filters 256 256
embedding dimensions 512 512
optimizer RAdam RAdam
learning rate 0.001 0.001
weight decay 0.01 0.01

3.1. Hub Task

For the hub-task, we built a character based, speaker-
independent FastSpeech 2 system with a view to using it as the

2This implementation is available at https://github.com/
kan-bayashi/ParallelWaveGAN
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Figure 1: Block diagram representing the voice building stages
for obtaining the final Spanish voice model for task SH1.

seed system for warm-starting the SS1 system. Figure1 shows
the different stages to build the final Spanish synthetic voice
from the pre-trained models and speech datasets.

In order to generate alignments for Spanish speech data,
we built a character based, speaker-independent Transformer
model on the M-AILABS Spanish database that was warm-
started from an existing Italian model trained on the M-
AILABS Italian database. The resulting model was further
adapted on the Blizzard dataset. Finally, these Transformer
models built from the M-AILABS Spanish and Blizzard data
were used to generate alignments for these datasets respectively.

On the aligned M-AILABS Spanish dataset we trained
an initial character based speaker-independent FastSpeech 2
model, which was warm-started from a model pre-trained on
M-AILABS Italian. First, its speaker and token embeddings
were adapted for 50 epochs (of 500 iterations each) while the
rest of the network remained frozen. Then, the full model was
adapted for further 870 epochs. The best loss values on the
validation set were achieved at epoch 960, with l1 loss=0.715,
duration loss=0.257, pitch loss=0.360, and energy loss=0.566.
Next, the five best validated models were averaged and used
as the seed for the model to be trained on an extended dataset
consisting of the aligned M-AILABS and Blizzard datasets.
Here, we adapted the embeddings for 20 epochs and trained
the model up to a total of 1110 epochs. The best valida-
tion loss was achieved at epoch 1100 with l1 loss=0.582, dura-
tion loss=0.163, pitch loss=0.248, and energy loss=0.398. Fi-
nally, the five best models with respect to validation loss were
averaged to yield our final model that was used to synthesise
speech for this task.

Please note that the word epoch in the text above and in the
following sections refers to pseudo-epochs, which are not full
iterations over the dataset but are arbitrarily limited to 500 or
1000 batches for the purpose of intermittent validation.

The token inventory over the Spanish databases consisted
of 36 (partly accented) characters, 4 punctuation marks and 4
special tokens.
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Figure 2: Block diagram showing the voice building process for
obtaining the mixed Spanish/English voice model for task SS1.

3.2. Spoke Task

For the spoke task, we built a speaker-independent FastSpeech
2 system with mixed character and phone token inputs. Figure 2
shows the block diagram for training the synthesis voice using
this system. We re-used the aligned Spanish databases built for
the hub task and added an existing pre-aligned VCTK corpus
with phone tokens from the CMU pronouncing dictionary. Our
character tokenisation preserved word boundaries by inserting
space tokens, in contrast to the phone tokenisation. The token
inventory of the VCTK database consisted of 69 (partly stress
marked) phones, 5 punctuation marks and three special sym-
bols. The combined token inventories consisted of 75 character
and phone tokens, 8 punctuation marks and 4 special symbols.

The training began with 20 epochs (500 iteration each)
of embedding adaptation followed by full-network training
up to 1600 epochs. The model achieved its best validation
score at epoch 1575 with l1 loss=0.737, duration loss=0.236,
pitch loss=0.283, and energy loss=0.337. The final model was
again averaged over the five best validated epoch models.

4. Evaluation Results
4.1. Hub Task

In terms of intelligibility results, our system obtained a Word
Error Rate (WER) for Sharvard test of 7.4%, which is above av-
erage compared with the other systems. However, the Pairwise
Wilcoxon signed rank tests showed that the differences between
our system and the others are not statistically significance at 1%
level. The results of intelligibility obtained for SUS (semanti-
cally unpredictable sentences) are worse than for Sharvard test,
as expected. Also, in the SUS test our system is significantly
worse than four other systems.

The results of speech quality showed that our system ob-
tained unsatisfactory Mean Opinion Scores (MOS) and similar-
ity to the original speaker, being placed in the bottom part of the
ranking. We believe that one of the main factors to explain the
poor results is the flat prosody and inefficient adaptation of our
pre-trained multi-speaker model to the target speaker using the
shared data. The possible factors that explain these results are
further discussed later.



4.2. Spoke Task

Our system also ranked in the bottom part with lowest Accept-
ability scores in the Spoke task. This result indicates that the
quality of synthesis of the English words was not good enough.
Our approach to be able to synthesise English words was simple
and we had limited time to make improvements on some prob-
lems we later detected in our implementation. Another expected
contribution to this result is that the quality of synthesis voice
was not natural enough, because it was similar to the quality of
the voice built for the hub task.

5. Discussion
The results obtained by our system in both tasks are worse than
we expected. Our goal was to train the synthetic voices for these
tasks using a state-of-the-art system, the FastSpeech 2 system,
minimising the amount of human work hours needed. In our
own past experiments, we built high-quality voices on other
languages so we assumed it could work well for building the
Spanish voice using the high-quality Blizzard dataset. A dif-
ference to our previous experiments was that we built voices
either from a single multi-speaker dataset or a single speaker
dataset, whereas here we consecutively fine-tuned models built
on different multi-speaker datasets towards a final multi-speaker
model that includes the target speaker. We assume that this pro-
cess of fine-tuning the models was not optimal and ended up
in a lower quality voice compared with other voices we built
before with FastSpeech 2.

The choice of a speaker-independent system for a speaker-
dependent task, such as the hub-task, may not seem obvi-
ous. However, during initial planning, we aimed to re-use
this system as the seed model for the spoke task. Since our
approach for the spoke task was to transfer speaker charac-
teristics via the speaker embedding, it made sense to warm-
start the final model from an already speaker-independent one.
Ironically, due to resource constraints, we did not actually ex-
plore seeding the spoke model from this one, as we had priori-
tised to explore the adaptation of a speaker-independent model
trained on a much larger variety of speakers from the LibriTTS
database. On the whole, the process for building the hub-task
system appears overly complex. Yet, to achieve good speaker
generalisation one needs a large variety of speakers. Unfor-
tunately, the M-AILABS Spanish dataset, while representing
more than three speakers, only has identity labels for three of
them. We started with this labeled subset and trained a speaker-
independent Transformer model intended as a source for align-
ments. This system, however, did not generate satisfactory
alignments. Our next attempt was to seed a Transformer sys-
tem from a Italian model trained on 51 speakers (shown to pro-
duce good alignments in past experiments), which succeeded.
Possibly the failure to generate good alignments from the initial
Transformer model trained on Spanish data is due to the low
speaker coverage of the three speaker corpus. Lack of speaker
coverage may also contribute to the reduced naturalness of the
multi-speaker FastSpeech 2 hub system despite the large size
(86 hours) of the combined M-AILABS and Blizzard dataset
on which this system was trained. We did not have enough time
to increase the speaker space coverage by identifying the speak-
ers in the unlabeled subset of M-AILABS Spanish to extend the
dataset used in the experiments.

In terms of tunning the system, we did not do any hyper-
parameter optimisation to find settings appropriate to the spe-
cific conditions. Instead, we relied on settings that worked in

similar experiments on other data. Thus, all our models repre-
sent first attempts in each stage of model building, which may
not be the best models that can be achieved with the system.
Another possible explanation for the non-optimal training of the
synthesis models is that the models may have been over-trained
in an effort to optimize the speaker embedding representation.

One aspect we neglected to model was the phonetic over-
lap of the two languages in the SS1 task. This was because our
combined character and phone tokenisation did not account for
the overlap in both inventories. The one-letter phone symbols
map to character tokens but the information of what language
these tokens represent is lost. This may create ambiguity that
is hard to overcome and cause mixed language pronunciations
within words. There may be benefit in tying the input token em-
bedding representations of the two languages when phonemes
overlap and using a separate embedding layer to signal which
language’s phonic realisation to use. We are going to test this
hypothesis in future work.

One aspect that we find puzzling is that in terms of valida-
tion losses our models are around 25-50% better than those of
the reference models for ESPnet’s FastSpeech 2 implementation
trained on VCTK that are provided by ESPnet’s authors. For
this comparison, the reference model losses were gleaned from
the training loss curves distributed with the model. Since we
used the same vocoder as in their implementation, there may be
a mismatch between our synthesiser outputs and the inputs re-
quired by the vocoder. Perhaps a purpose trained vocoder would
have yielded better results.

From listening to the synthetic speech, one of the clear
problem with our Spanish voice is that it produced speech with
flat prosody. There are also occasional artifacts but speech dis-
tortion does not seem to be a major reason to explain the low
scores, given that the system is not significantly worse than any
other system in terms of intelligibility. We need to conduct fur-
ther detailed analysis of the intermediary stages of voice build-
ing, the vocoder and trained models to better understand the
reasons for the result of quality lower than expected.

There have been significant advances in speech synthesis
in recent years and the latest results in the Blizzard Challenge
show that the best synthesis systems produce speech quality al-
most indistinguishable from recorded speech. It may be the case
that in evaluations experiments like the Blizzard that compares
different systems, listeners in this experiment tolerated less syn-
thetic speech with flat prosody and penalised more the systems
that are significantly worse than the best quality systems. In
other words, for listeners the reference of synthetic speech qual-
ity is higher compared with past Blizzard experiments, in which
there was a larger difference in quality between the synthesis
quality of the systems and human speech.

6. Conclusions
We embraced the challenge to participate in the Blizzard this
year, motivated to build a synthetic voice in a new language,
Spanish, and the task of code-switching between the Span-
ish and English languages. We took a standard approach of
using a robust and high-quality DNN-based system, the Fast-
Speech 2 system, in this attempt. We also chose the approach
of building multi-speaker models instead of single speaker ones.
One reason was to take advantage of a much larger publicly
multi-speaker Spanish dataset compared with the shared single
speaker data. The other reason was to be able to synthesise the
voice of the target Spanish speaker for the model trained from a
mix of English and Spanish speakers.



One of the main challenges encountered was in our initial
attempt to build a Spanish voice using a large external multi-
speaker Spanish dataset. It did not seem to produce a good
result so we got around this problem by using one of our pre-
trained Italian models to warm-start the training of the Spanish
model. Another main challenge was to build a model using both
Spanish and English datasets for the code-switching task. Our
approach was simple but effective by using a different tokeniser
for the Spanish and English text processing, phone and charac-
ter based tokenisers respectively. The evaluation results of our
entry were lower than our expectations. Unfortunately, we had
no time to further investigate the causes of the low synthesis
quality and perform significant improvements. Our participa-
tion was valuable for us in terms of what we learned in building
the Spanish synthetic voices. Also, the results are quite interest-
ing and intriguing as a case study in future work for increasing
our knowledge of what produces unexpected results in training
neural TTS models.
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