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Abstract
In this paper we present the Text-to-Speech synthesis system
proposed for the 2021 Blizzard Challenge by Aholab Signal
Processing Group. The goal of this challenge is to build a syn-
thetic voice from a provided speech corpus recorded in Euro-
pean Spanish. The challenge comprises two tasks: synthesising
text containing only Spanish words and synthesising Spanish
texts containing a small number of English words. Our system
uses Tacotron-2 to compute mel-spectrograms from the input
sequence, followed by WaveGlow as neural vocoder to obtain
the audio signals from the spectrograms. A Spanish linguistic
front-end module was used to transform grapheme sequences
into phoneme sequences. In order to improve the robustness of
the system and make the learning of the alignments in the acous-
tic model easier, a prior knowledge based loss was added to it.
Evaluation shows that our systems had a good performance on
both tasks.
Index Terms: DNN based Speech Synthesis, Text to speech,
Tacotron-2

1. Introduction
Blizzard Challenge 2021 is the seventeenth edition of an annu-
ally hold challenge [1] intended to compare speech synthesis
models and techniques applied over a common corpus. Partici-
pants have to extract the released corpus, build synthetic voices
and synthesise a determined set of test sentences. In this year’s
challenge, almost 10 hours of speech data from a female native
speaker of European Spanish are provided and two tasks are
proposed:

• Hub task 2021-SH1: The hub task goal is to build a voice
from the provided European Spanish data to synthesise
texts containing only Spanish words.

• Spoke task 2021-SS1: The spoke task consists in build-
ing a voice from the provided European Spanish data to
synthesise Spanish texts containing a small number of
English words in each sentence.

The output from each task undergoes subjective evaluation
through listening tests covering intelligibility, naturalness, sim-
ilarity to the original speaker and, in the Spoke task, acceptabil-
ity of the English words.

The goal of Text-to-Speech (TTS) systems is to achieve
human-like synthetic speech from input written language. Tra-
ditionally, unit selection (US) based concatenative synthesis
[2, 3] and statistical parametric (SP) speech synthesis [4, 5] have
been used to develop TTS systems.

Nowadays, deep neural networks (DNN) achieve state of
the art performance in the development of speech synthesis
systems [6]. Neural networks have benefited TTS systems by
largely improving the quality and naturalness of the synthetic
speech with respect to traditional methods. Furthermore DNNs
allow to train and design the systems in an end-to-end (E2E)

fashion [7, 8], reducing traditional multi-stage pipelines com-
plexity at the expense of an increased data dependency.

E2E systems usually contain two components; a feature
prediction network that extracts intermediate feature represen-
tations of the acoustic signals, and a vocoder that synthesises
speech from the generated intermediate representations. In the
Spanish TTS system that we propose for this challenge we make
use of three main components:

• A Spanish linguistic front-end that cleans and con-
verts the input text into a phoneme sequence, using the
SAMPA alphabet [9].

• A Tacotron-2 [10] based feature prediction network, with
an added loss term that contains aligning information.

• A pretrained WaveGlow [11] neural vocoder, fine-tuned
with the provided Spanish corpus.

This paper is organised as follows. Section 2 introduces
our proposed system for both tasks, with a detailed description
of the architecture and the data preparation. Section 3 covers
the results obtained with our system and conclusions are drawn
in Section 4.

2. Methods
In this section we will describe the framework and methodolo-
gies used in the systems we proposed for 2021-SH1 and 2021-
SS1 tasks. Figure 1 shows the base architecture of the proposed
system. An adaptation of the linguistic Front-End was applied
for the 2021-SS1 task. A description of the data and the mod-
ifications applied to it will be covered in the next subsection,
followed by an explanation of each module of the system.

2.1. Data preparation

The data provided by the Blizzard challenge committee con-
sists of 9.58 hours of recordings by a single Spanish female
speaker, including 4920 sentences and their corresponding or-
thographic transcriptions. In order to train the system, both
audio and text were processed. First, all audio signals were
down-sampled from 48kHz to 22.05kHz. To prevent out-of-
memory errors, audio signals longer than 15 seconds were left
out (i.e. a 0.5% of audios from the provided corpus). Phoneme
sequences were obtained from the text using a Spanish linguis-
tic Front-End developed by our team. The alignment between
phonemes and audio is an additional information required for
training the acoustic model. To obtain the alignment we made
use of Montreal Forced Aligner (MFA)[12], a speech recog-
nition Kaldi [13] based model that returns the timestamps of
each phoneme. MFA uses a pronunciation dictionary to look
up which phonemes correspond to each word. The pronunci-
ation dictionary required for this model was built-up from the
transcriptions obtained from our front-end.

When obtaining the time-aligned phoneme sequences, we
observed some inconsistencies between the pauses in the tran-



Figure 1: Architecture of the system.

scriptions and the actual pauses in the audio signals. This could
potentially harm the learning of the alignments in the acous-
tic model, so we re-positioned the pauses in the phoneme se-
quences to match the silences in the audio signals.

2.2. Front-End

For the processing of the provided text we used the AhoTTS
[14, 15] Spanish linguistic front-end developed by our team.
This front-end has two main modules: a initial text processor
and a linguistic processor. The text processor expands the num-
bers and the acronyms into directly readable words. The output
of this module gets fed into the linguistic processor, a rule based
module that returns the corresponding SAMPA phone sequence
along with the stress level of each phone.

The approach we took for the 2021-SS1 task is fully built
in this component of the system. The first step was developing
an automatic detection tool that could identify all English words
located in the sentences of the test set. For this purpose we opted
for a dictionary based strategy, considering as English words all
those present in the CMU dictionary1, but excluding the ones
in common with a publicly available Spanish dictionary 2. In
addition to this list of Spanish words, some conjugated verbs
were included in it.

Once a word is identified as an English one, the aim of our
proposal is to replicate the actual pronunciation of the target
word with the available phones in the Spanish phone set. For
this purpose the CMU dictionary was used again. CMU dictio-
nary contains a list of tuples, including each word in the En-
glish language and its corresponding phones represented in IPA
alphabet [16]. As our linguistic front-end extracts phones in
SAMPA alphabet, we adapted the phones from the CMU dictio-
nary to the SAMPA notation. This step was done via a simple
rule based system, which transforms an IPA symbol (or a set of
IPA symbols) to the corresponding SAMPA representation.

2.3. Acoustic model

The aim of the acoustic model is to represent the relation be-
tween the input phonemes and the corresponding acoustic fea-
tures of the audio signal. The acoustic model that we used in our
proposal is based on Tacotron-2 [10]. Tacotron-2 is a sequence-
to-sequence model that originally maps character embeddings

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2https://github.com/javierarce/palabras/blob/master/listado-

general.txt

to mel-scale spectrograms. This model involves an encoder-
decoder architecture with attention mechanism.

The encoder converts a character sequence into a hidden
feature representation which is later used by the decoder. In
contrast to the original model, the input to the encoder in our
proposal is no longer a character sequence but a phoneme se-
quence obtained from the Spanish front-end. Therefore, the in-
put character embedding is substituted by a phoneme embed-
ding which includes the symbols of the Spanish SAMPA alpha-
bet 3, along with the corresponding accent marks. The output
of the phoneme embedding is then fed into a stack of 3 con-
volutional layers that model long-term relations between the
phonemes. Finally, a Bi-directional LSTM generates the en-
coder hidden outputs from the output of the last convolutional
layer.

The output of the encoder is consumed by the attention
mechanism to produce a context vector. The attention mech-
anism provides the decoder with the information required to
refer to the correct parts of the encoding sequence at each de-
coding step. Tacotron-2 uses a custom location-sensitive atten-
tion mechanism [17] that employs cumulative attention weights
from previous decoding steps as an additional feature.

The decoder is an auto-regressive recurrent neural network
that predicts one frame at each decoding step. It consists on
a 2 layered pre-net, a 2 Layer LSTM network and a convolu-
tional post-net. The prediction from the previous decoding step
is passed through the pre-net and the output is concatenated to
the context vector. This concatenation is then fed into the 2
layer LSTM. The output of this stage and the context vector
are again concatenated and then passed through two different
projection layers: one that predicts the stop token, and another
one that predicts the target spectrogram frame. A final convolu-
tional post-net predicts a residual that combined with the whole
spectrogram gives as result the final mel spectrogram.

Although this model achieves state-of-the-art results in
terms of speech quality, it may run into alignment issues derived
from the attention module that cause major speech degradation
[18, 19, 20]. To improve the model stability we opted for the
approach taken in [18], including an additional loss computed
from the predicted alignment and the ground truth alignment of
the sentence.

The training of this model was performed on a single
NVIDIA TITAN RTX GPU. Batch size was set to 64 and learn-

3https://www.phon.ucl.ac.uk/home/sampa/spanish.htm



Figure 2: Task 2021-SH1 Mean Opinion Score on naturalness

ing rate remained constant at 1e-3. In order to prevent over-
fitting, decoder and attention dropouts were set to 0.4. The
training was early stopped at 26000 training iterations.

2.4. Neural vocoder

The neural vocoder reconstructs the waveform audio from the
mel spectrogram obtained in the acoustic model. For this pur-
pose WaveGlow generative network [11] was adopted, as it pro-
vides audio quality close to WaveNet but with faster inference
times. The architecture of this vocoder combines insights of
Glow [21] and WaveNet [22].

WaveGlow generates audio by sampling from a simple dis-
tribution. The distribution needs to have the same number of
dimensions as the target output. For reconstructing the wave-
form, this simple distribution goes through a series of layers
trained to perform invertible transformations to it until reaching
the target and a more complex distribution.

During training, the network is trained in the opposite way:
The complex distribution is subjected to a series of invertible
transformations until becoming the simple distribution, in this
case a zero mean spherical Gaussian. This sequence of trans-
formations is called ”normalising flow” [23].

In order to improve the quality of the synthetic speech gen-
erated with this vocoder, we used a pretrained model provided
by [24]. This model was trained on LJSpeech corpus [25], so
we fine-tuned it with the provided audios.

The fine-tuning of the model was performed for 230000 it-
erations, with a batch size of 3 and a constant learning rate of
1e-4. The rest of the parameters remained unchanged.

Due to deadline issues, the fine-tuning of the model was
stopped before reaching the optimal error. Despite this, infor-
mal listening tests confirmed that this fine-tuning improved the
quality with respect to the unmodified pretrained model.

Figure 3: Task 2021-SH1 Mean Opinion Score on similarity
comparing to original speaker

Figure 4: Task 2021-SH1 Word error rate obtained from Shar-
vard test

3. Results
In this section we will introduce the official evaluation results
of our proposals. This year the challenge presented two differ-
ent tasks, and we submitted our proposals to both of them: Task
2021-SH1 and Task 2021-SS1. In the first task (2021-SH1), a
total of 12 systems plus a reference natural voice were evalu-
ated. The participating systems are labelled as A/ B/ C/ D/ E/
F/ G/ I/ J/ K/ L/ N, being ”E” the label assigned to our proposed
system. In most evaluations natural speech was also considered



Figure 5: Task 2021-SH1 Word error rate obtained from SUS
test

and it was labelled as ”R”. In the second task (2021-SS1), a to-
tal of 10 systems plus a reference natural voice were evaluated.
In this case the systems are labelled as A/ C/ D/ E/ H/ I/ K/ L/
M/ N, being ”E” our proposed system and again ”R” the refer-
ence natural voice. The following subsections will comment on
the results for each task.

3.1. Task 2021-SH1

Synthetic speech submitted to this task undergoes an online
evaluation with three different sections that attend to different
characteristics of the audios:

• Naturalness: A measurement of how natural or unnat-
ural the sentence sounded on a scale of 1 [Completely
Unnatural] to 5 [Completely Natural].

• Similarity to the original speaker: A measurement of
how similar the synthetic voice sounded to the origi-
nal voice in comparison to some reference samples on
a scale from 1 [Sounds like a totally different person] to
5 [Sounds like exactly the same person].

• Intelligibility: A measurement of the comprehensibility
level of the synthetic utterances. Reviewers listened to
the synthetic speech and typed what they heard, then
word error rates are obtained for each system.

Figure 2 shows the scores achieved by all teams in the Hub
naturalness evaluation. Figure 3 shows the similarity scores
achieved in the Hub task. It can be seen that our model has
an average performance among all teams in both dimensions.

Regarding the intelligibility of the synthetic speech pro-
vided by all systems, two different test datasets were used for
conducting this evaluation: Sharvard corpus containing phonet-
ically balanced sentences, and SUS corpus containing semanti-
cally unpredictable sentences. Figures 4 and 5 show the respec-
tive word error rates from all systems in each dataset. Attending
to both figures it can be seen that our system has not one of the

Figure 6: Task 2021-SS1 Mean Opinion Score on naturalness

lowest WER but there are no statistically significant differences
with respect to those performing best.

3.2. Task 2021-SS1

In this task the online evaluation of the systems had three dif-
ferent sections:

• Naturalness: A measurement of how natural or unnat-
ural the sentence sounded on a scale of 1 [Completely
Unnatural] to 5 [Completely Natural].

• Similarity to the original speaker: A measurement of
how similar the synthetic voice sounded to the origi-
nal voice in comparison to some reference samples on
a scale from 1 [Sounds like a totally different person] to
5 [Sounds like exactly the same person].

• Acceptability: In this test participants evaluated how ac-
ceptable or unacceptable the English words contained in
the Spanish sentences sounded, from 1 [Not Intelligible]
to 5 [Perfect]. The Spanish words in the sentence were
not evaluated.

Figure 6 presents the overall MOS obtained by each system
in the Spoke task. It can be seen that our proposal achieved a
good performance. Regarding similarity to the original speaker,
Figure 7 presents the scores obtained by each system. In this
evaluation we obtained a slightly worse result but still achieved
an average performance with respect to other systems.

Finally, Figure 8 presents the scores of the part of the test
where the acceptability of the English words was evaluated. In
this section our system achieved a good score.

4. Conclusions
In this paper we present the submission of the AHOLAB Text-
to-Speech system based on Tacotron-2 to the 2021 Blizzard
Challenge. We submitted a proposal to both tasks: Hub task
2021-SH1 and Spoke task 2021-SS1. In both tasks our system



Figure 7: Task 2021-SS1 Mean Opinion Score on similarity
comparing to original speaker

presented an average performance among all participating sys-
tems. Despite having a good overall performance, we believe
that our system could have achieved better results with a longer
adaptation of the vocoder to the provided voice.

In future work we will experiment with different vocoders
and training techniques. The aim is to reduce the number of
artifacts and improve the overall quality of the synthetic speech
in terms of naturalness of the signal and similarity to the original
speaker.
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