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Abstract
This paper presents the CPQD-UNICAMP text-to-speech sys-
tem for Blizzard Challenge 2021. The system consists of
a bilingual linguistic front-end, an acoustic model based on
Tacotron2 and a Parallel Wavegan neural vocoder. A multi-
speaker Brazilian Portuguese dataset was added to the Blizzard
2021 dataset in order to train a bilingual acoustic model. The
system was later fine-tuned with the target speaker data. Sen-
tences were classified according to the punctuation type and
a specialized model was trained for each category to better
model the intonation pattern of non-declarative sentences. The
Blizzard Challenge evaluation for the hub task shows that the
proposed strategy achieved high naturalness, intelligibility and
similarity results.
Index Terms: Blizzard Challenge 2021, Speech Synthesis,
Tacotron2, Parallel Wavegan

1. Introduction
The Blizzard Challenge [1] has been organized annually since
2005, to better understand and compare research techniques in
building corpus-based speech synthesizers on the same data.

In each edition, a speech dataset is provided to the chal-
lenge participants, who can use this data to build their systems
according to the challenge rules.

This year’s challenge [2] focused on the European Span-
ish language. Five hours of speech data from a female native
speaker were provided. The challenge consisted of taking the
released speech data, building a synthetic voice and synthesiz-
ing a prescribed set of test sentences. Two tasks were proposed:
a hub task, in which participants should build a system to syn-
thesise texts containing only Spanish words, and a spoken task,
in which test sentences contained also a small number of En-
glish words.

Teams could submit synthetic speech for either or both
tasks. In the case of this work, we focused exclusively on the
hub task.

Techniques based on deep learning have been prevalent in
the latest Blizzard evaluations [3], [4], consistently obtaining
better results in terms of naturalness, intelligibility and simi-
larity with the target voice. Most state-of-the-art systems to-
day consist of a seq2seq acoustic model followed by a neural
vocoder. The strategy presented in this work follows the same
approach.

Generating a robust acoustic model requires a large amount
of training data, which is often unfeasible when dealing with
low resourced languages. In the case of the Blizzard 2021
challenge, the speech corpus consists of around five hours of

recorded data, which, from our experience, we consider a rea-
sonable amount of data, but still insufficient to build a high qual-
ity model. The use of additional data from different speakers in
the same language is a strategy already explored in some works
such as [5], [6] and [7] to overcome the lack of training data
from a single speaker. However, for many languages of interest,
the amount of data necessary to train a multi-speaker model is
still limited or does not exist at all. Hence, other works tried
to explore the use of multi-language multi-speaker modeling to
achieve a better performance in the low-resource language sce-
nario. This approach has proven to be successful: [8], [9] and
[10], for instance, showed that mixing data from different lan-
guages can not only help to model low-resource languages but
also improve their quality.

The approach used in this work consists of augmenting the
provided material with non-Spanish data. First, a model trained
exclusively with the challenge data was created to be used as
a baseline. Next, experiments using both Brazilian Portuguese
(BP) and American English (AE) as additional data were per-
formed.

Considering that both European Spanish (ES) and BP are
Ibero-Romance languages and share the same ancestor, while
AE is a Germanic language, the first two share many similari-
ties in lexicon, grammar and pronunciation. For example, the
set of vowels and vowel clusters in ES can be considered prac-
tically a subset of BP, with very similar pronunciation. In AE,
on the other hand, vowels are often pronounced as diphthongs
and the pronunciation and intonations used are significantly dif-
ferent from both ES and BP. These similarities and differences
between ES and the other two languages can be seen when ana-
lyzing the proprietary phoneme set used in the linguistic front-
end of the proposed system, in which the set of phonemes in ES
is much better represented within the set of BP phonemes than
in the AE phonemes.

We hypothesize that the similarity between the target lan-
guage and the language used for augmentation has an influence
on the final result, especially with regard to the acoustic model.
Such hypothesis was confirmed by our results, which showed a
clear preference for the system that combined BP and ES in the
training data.

Using both Blizzard and external data to train a bilingual
multi-speaker acoustic model, which was later fine-tuned with
the target speaker’s data, proved to be very effective. However,
there was still room to improve the quality of non-declarative
sentences. Hence, we also propose dividing non-declarative
sentences into four categories (three interrogative and one ex-
clamatory) and creating a specialized acoustic model for each
category.

Regarding the neural vocoder, a universal model was ini-



tially trained with 35 hours of multi-speaker multi-language
speech data, and several fine-tuning approaches were tested to
adapt this model towards the target speaker’s voice.

The rest of this paper is organized as follows: Section 2 de-
scribes the data used in our experiments and outlines the build-
ing blocks of the proposed system. Section 3 describes the ex-
perimental setup, including data preparation and training strate-
gies used to create the acoustic model and the neural vocoder.
Section 4 presents the results of the subjective evaluation con-
ducted by the challenge organizers. A conclusion is give in the
end..

2. System Description
2.1. Data

The Blizzard Challenge 2021 data consists of five hours of Eu-
ropean Spanish (ES) speech from one female native speaker.
Sentences are clearly spoken and the speech files consist of
noise-free studio quality recordings in WAV format sampled at
48 kHz, 16 bits, mono.

In order to enrich the training material, external data com-
prising Brazilian Portuguese (BP) and American English (AE)
was included in our experiments.

For BP, a proprietary multi-speaker dataset, with 30 hours
of speech from 2 male and 4 female speakers was used. Record-
ings consist of phonetically rich sentences sampled at 22kHz,
whose file format and recording conditions are similar to those
of the ES dataset.

With regard to AE, a subset of LibriTTS [11] was selected
with characteristics similar to those of the BP data in terms of
gender balance and amount of data, with 30 hours of speech
from 22 male and 42 female speakers. LibriTTS is originally
sampled at 24 kHz.

The sample rate used in our experiments was 22kHz, so
speech files were downsampled whenever necessary.

As will be detailed later, all three languages were used in
our experiments, but the final version submitted for evaluation
relied solely on the ES and BP data.

2.2. Linguistic Front-end

The linguistic front-end transforms the input text sequence into
a phoneme sequence to be fed to the acoustic model. It consists
of a text normalizer, which expands numbers, acronyms and
non-linguistic symbols, followed by a grapheme-to-phoneme
(G2P) converter. We employ three independent front-ends, one
for each language present in our data, i.e. European Span-
ish (ES), Brazilian Portuguese (BP) and American English
(AE). All three G2P modules work with a common proprietary
phoneme set comprising (BP: 42 phonemes + 7 pause types;
ES: 26 phonemes + 7 pause types; AE: 29 phonemes + 7 pause
types). It is important to notice that, in such phoneme set, 84.6
percent of the ES phonemes are also present in BP, while only
61.5 percent of the ES phonemes are present in AE.

The implementation of G2P for ES and BP is based on a set
of language specific rules, since, in most cases, pronunciation
of words can be inferred from their spelling. Additionally, a
lookup table is consulted in the case of words for which the rules
fail. In the case of AE, the primary way to obtain the correct
pronunciation is through a pronunciation dictionary, while out
of vocabulary words are handled by a decision tree. In all cases,
post-processing rules are applied to deal with co-articulation.

2.3. Acoustic Model

For the acoustic model we adopt the Tacotron2 [12] attention-
based encoder-decoder architecture. The encoder consists of
three CNN layers followed by one bi-directional LSTM layer.
We use phoneme sequence as input to prevent the model from
learning pronunciation patterns straight from the character se-
quence. A language label is fed to the encoder via a non-
linguistic token preceding the phoneme sequence, so the net-
work can be conditioned on the target language.

The network is also conditioned on the speaker identity by
a 512 dimensional x-vector [13] added to the encoder output
[14]. X-vectors are computed during training by an indepen-
dent pre-trained extractor (in this work we use the Kaldi SITW
model1. Since it is a 16 kHz extractor, audio files are downsam-
pled to 16kHz before computing x-vectors). At inference time,
the mean x-vector of the target speaker is used to condition the
network.

The network uses location sensitive attention with guided
attention loss to perform a soft alignment between the phoneme
sequence and the output mel-spectrogram, by determining the
most related context at each step with respect to the previous
decoding output and the encoder output states.

The decoder is comprised of a two layer LSTM network,
a fully connected PreNet and a convolutional PostNet. The
PreNet consists of two fully connected linear layers, while the
PostNet is constructed by five convolutional layers to reduce the
information loss caused by the unidirectional decoding charac-
teristic of the decoder. A stop token is used to predict the end
of the decoding process.

The output of the acoustic model is a sequence of 80-dim
mel-spectrogram values.

2.4. Vocoder

We use Parallel Wavegan [15] to process the output of the
acoustic model. It is a parallel waveform generation method
based on a generative adversarial network (GAN), that can gen-
erate high quality speech samples from the mel-spectrogram
values, with small footprint and a reasonable computation time.
The Parallel Wavegan architecture consists of a non-causal
WaveNet generator and a single CNN discriminator (D). Based
on GANs, the generator learns a distribution of realistic wave-
forms by trying to deceive the discriminator into recognizing
the generated samples as real. Moreover, the discriminator is
trained to correctly classify the generated sample as fake while
classifying the ground truth as real. By combining adversar-
ial training with an auxiliary multi-resolution short-time Fourier
transform (STFT) loss function, Parallel WaveGAN learns the
time-frequency characteristics of realistic speech efficiently.

3. Experiments / System building
3.1. Data preparation

No relevant pronunciation errors could be found in the mate-
rial provided by the challenge organizers. The SNR ratio of
the speech samples was high, and no significant distortion such
as clipping, reverberation, etc, was observed. Yet, some pre-
processing steps were necessary to ensure proper training of the
system modules, as described below.

Long sentences were broken to ensure the duration of train-
ing samples would be a maximum of 10 secs. Whenever possi-
ble, punctuation symbols were used as break points.

1https://kaldi-asr.org/models/m8



Sentences were classified according to the last punctuation
character. This was necessary to create separate training sets for
each sentence type, as will be detailed in section 3.2.

In the case of sentences ending with a question mark (?)
three categories were considered:

• sentences in which the first word is an interrogative
pronoun (e.g “quién”, “cuándo” “cómo”) , or in which
the second or third word is an interrogative pronoun
preceded by a preposition, were classified as “open-
questions”.

• sentences in which the word “o” occurs were classified
as “or-questions”

• the remaining interrogative sentences were classified as
“yes-no-questions”

If a question could be classified in more than one category, then
it was marked as an “open-question”.

Additionally, two non-interrogative classes were consid-
ered:

• sentences ending with an exclamation mark (!) were
classified as “exclamatory”.

• all remaining sentences were classified as “declarative”
Informal tests showed that the application of the aforemen-

tioned rules resulted in very few classification errors.
Speech files were converted to WAV format sampled at

22kHz, 16 bits, mono. Leading and trailing silences of all
speech samples were normalized between 200 and 300 ms. Ad-
ditionally, a 10 Hz low pass filter was applied to all samples in
order to remove DC level.

3.2. Acoustic model training

The acoustic model was built with the espnet [16] toolkit2.
More specifically, the refactored version, called espnet2 [17],
was used. In our experiments we employed a dynamic batch
size, with number of bins equal to 2560000.

An initial acoustic model trained with only the 5h Spanish
data was created as a baseline. The hypothesis we wished to
validate was whether a better model could be obtained without
requiring any additional data in the target language. For that, we
boosted the original model by augmenting the training data with
30 hours of a second language. We used the multispeaker BP
and the AE data described in section 2.1 to train two separate
ES+BP and ES+AE models. These were trained for 500 epochs,
with 200 iterations per epoch.

Regarding phonetics, ES is much closer to BP than to AE,
so we wanted to assess to what extent the choice of the supple-
mental language would affect the quality of the boosted models.

We performed AB-like listening tests with 6 expert listen-
ers in order to compare the abovementioned models. A text
corpus consisting of phonetically rich sentences, proper names,
addresses and currency values were used in the listening tests3.
Besides indicating their preference, listeners were asked to give
an overall impression about the degradations they could per-
ceive in the synthetic speech, focusing on naturalness and intel-
ligibility. Similarity was not evaluated.

Table 1 shows the result of the AB tests comparing the three
models. 100% of the listeners chose the ES+BP over both the
ES-only and ES+AE models, while 50% of the listeners chose
the ES+AE model over the ES-only model. The most relevant
overall impressions reported by the listeners were:

2https://github.com/espnet/espnet
3Audio samples are available at https://bit.ly/38QL9BY

Table 1: The AB test result for different acoustic models
trained with different datasets: European Spanish (ES); Eu-
ropean Spanish + Brazilian Portuguese (ES+BP); European
Spanish + American English (ES+AE).

XXXXXXXXXEval
Model ES+BP ES+AE ES

No
preference

ES+BP vs ES 100% - 0% 0%
ES+BP vs ES+AE 100% 0% - 0%
ES+AE vs ES - 50% 16.7% 33.3%

• ES-only model: Some spectral noise and unnatural arti-
facts were reported. Despite a few pronunciation errors,
no gross errors such as muffling, skipping, repetitions
and early stops were perceived. This is a surprisingly
good result given that only 5 hours of training data were
used. Our previous experience with BP showed that at
least 15 hours of training data was necessary to train
an acoustic model with acceptable quality. We hypothe-
size that ES is more regular than BP with regard to the
grapheme to phoneme mapping, in addition to having a
less diverse set of phonemes, which might help achiev-
ing a good quality with less training data.

• ES+AE model: augmenting the training data with AE re-
sulted in a less quavering voice and less spectral noise.
Unnatural artifacts were reduced but not eliminated. On
the other hand, the quality of the prosody was consid-
ered worse, since the synthetic sentences had a flatter
and sometimes unnatural intonation.

• ES+BP model: training enriched with BP data improved
the naturalness of prosody, eliminated most of the un-
natural artifacts and improved the general audio quality
(less quavering voice / less spectral noise).

Therefore, AE data was no longer used in subsequent ex-
periments.

The ES+BP model was later fine-tuned with only the ES
data, in order to better fit it to the target speaker. 500 epochs
were used with 200 iterations per epoch for this task.

The resulting model achieved high naturalness, intelligibil-
ity and similarity with the target speaker’s voice. However,
it was noted that non-declarative sentences were not properly
modeled. In such cases, the final punctuation was usually ig-
nored and the sentence had a declarative intonation pattern. In
order to overcome this limitation, specialized models for each
of the non-declarative sentence types described in Section 3.1
were trained. Such models were obtained with a second round
of fine-tuning, in which the training data consisted exclusively
of sentences of the target type. In this second round of fine-
tuning 300 epochs were executed, with 20 iterations per epoch.

205 sentences extracted from the ES dataset were used to
fine-tune the “open-questions” model, and 214 sentences, also
extracted from the ES data, were used to adapt the “yes-no-
questions” model. In the case of the “or-questions” only 14
sentences existed in the ES dataset, which proved to be insuf-
ficient to adapt the model. For this reason, 185 or-questions
were selected from the BP dataset and added to the adapta-
tion data. Similarly, the adaptation data for the “exclamatory”
model consisted of 71 sentences from the ES dataset and 129
from the BP dataset.

In the case of the declarative sentences no second round of
fine-tuning was executed.



3.3. Vocoder training

The neural vocoder was built using Hayashi’s publicly available
unofficial implementation4 of Parallel Wavegan on GitHub. To
avoid training the neural vocoder from scratch, a model pre-
trained with 3000k steps on the LJSpeech [18] dataset was used
to initialize the network weights. Such model is publicly avail-
able at the Parallel Wavegan repository on GitHub.

600k training steps were executed wit the same data used
by the base acoustic model (i.e. 5 hours ES + 30 hours BP)
in order to obtain a multi-speaker neural vocoder. This multi-
speaker model was later fine-tuned with only the target speaker
data, so the model could specialize in the voice of the target
speaker. In this case, 1500k training steps were executed. A
better perceptual result was achieved when the weights obtained
in steps 1300k, 1400k and 1500k were averaged in order to get
the final model weights.

3.4. Inference

At inference time, each sentence was synthesized indepen-
dently. A sentence classifier, based on the rules described in
Section 3.1, was used in order to select the most appropriate
acoustic model for each sentence.

The acoustic model was conditioned on the phonetic se-
quence generated by the linguistic front-end, as well as on the
speaker ID and the target language. The mean x-vector of the
target speaker was used to inform the speaker ID, while a text
label preceding the phoneme sequence was used to inform the
target language.

4. Results
This section discusses the evaluation results of our system on
the Blizzard Challenge 2021’s hub task. Our system is iden-
tified as G, whereas system R is natural speech and systems
A/B/C/D/E/F/I/J/K/L/N are the the remaining 11 participating
teams.

The evaluation was conducted online. The order of presen-
tation of the systems was varied according to a Latin Square
design. The assessment consisted of independent test sessions,
whose ultimate goal was to generate an assessment metric for
each of the following aspects:

• naturalness (MOS): a score representing how natural or
unnatural the sentence sounded on a scale ranging from
1 [Completely Unnatural] to 5 [Completely Natural].

• similarity to original speaker: a score representing the
degree of similarity between the synthesized voice and
the target speaker’s voice on a scale ranging from 1
[Sounds like a totally different person] to 5 [Sounds like
exactly the same person].

• intelligibility: a word error rate (WER) count, obtained
by asking participants to listen to synthetic utterances
and then type in what they just heard.

Three types of listeners took part in the evaluation: paid lis-
teners (native Spanish speakers), speech experts and volunteers
(non-experts).

4.1. Naturalness

Figure 1 shows the boxplot for naturalness considering ratings
from all listeners. Among all systems submitted to the chal-

4https://github.com/kan-bayashi/ParallelWaveGAN

lenge, only one managed to obtain a better result than ours,
while three other systems obtained comparable results.

Figure 1: Mean Opinion Scores (MOS) for all listeners - Overall
Impression.

4.2. Similarity

The speaker similarity boxplot with mean opinion scores from
all listeners is shown in Figure 2. As with the naturalness test,
our system outperformed most of the other systems. Two partic-
ipants obtained better results, while a third participant achieved
a rating that can be considered statistically similar to ours.

4.3. Intelligibility

The intelligibility analysis was separated into two sections. One
featured natural sentences from the Sharvard corpus. Another
called SUS contained sentences provided by TALP-UPC5 and
Aholab-EHU6 research laboratories, manually generated con-
taining different syntactic structures and lexicon requirements
for semantically unpredictable sentences.

Figure 3 shows the result for the word error rate on Sharvard
sentences, while Figure 4 shows the result for the word error
rate on SUS sentences. In both cases the results obtained by
our system can’t be considered statistically different from those
obtained by most participants, including the top ranked.

4.4. Discussion

One point that must be highlighted is that the authors of this
paper have access to a large amount of Latin American Spanish
speech data that could have been used to obtain better results for
the Blizzard Challenge. Despite that, we decided not to use such
data in our submission, since our main objective was to evaluate
if a high quality system could be obtained without making use
of any additional data in the target language. We also wanted
to asses whether adding data in a different but similar language
could improve the results.

5http://www.talp.upc.edu/
6https://aholab.ehu.eus/



Figure 2: Similarity scores comparing to original speaker for
all listeners - Overall Impression.

Figure 3: Word error rate for Sharvard test for native speakers
of Spanish.

Figure 4: Word error rate for SUS test for native speakers of
Spanish.

During system development, other strategies to improve the
prosody of non-declarative sentences were tested, such as (1)
insertion of a non-linguistic label in the beginning of each sen-
tence to inform the sentence type; (2) concatenation of a one-hot
embedding to the encoder output, and (3) utilization of Global
Style Tokens [19] to capture the different intonation patterns in
an unsupervised way. All of these approaches resulted in worse
results than those obtained by our submitted system, especially
in the case of sentence types that were underrepresented in the
training data. Despite that, we believe such strategies deserve
further investigation.

5. Conclusions
In this paper we have presented the joint submission from
CPQD and Unicamp (CPQD-Unicamp) to Blizzard Speech
Synthesis challenge 2021. The system consists of a bilingual
linguistic front-end, an acoustic model based on Tacotron2 and
a Parallel Wavegan neural vocoder. A multi-speaker Brazilian
Portuguese dataset was added to the Blizzard 2021 dataset in
order to train a bilingual acoustic model, while the vocoder was
trained with data in European Spanish, Brazilian Portuguese
and American English. Such modules were later fine-tuned
with the target speaker data, and specialized models have been
trained to better handle intonation patterns related to the punc-
tuation mark. The evaluation results indicate that enriching the
acoustic model training with data from a second language can
improve the model quality.
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