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Abstract
We describe the text-to-speech (TTS) system submitted from
The Centre for Speech Technology Research at the University
of Edinburgh to the Blizzard Challenge 2021. We participated
in the spoke task to build a voice for Peninsular Spanish, where
test utterances contain a small number of English words. Our
system is trained from monolingual data in Spanish and En-
glish, including some Spanish-accented English and Spanish
utterances containing English words, but without explicit su-
pervision for these aspects. Input texts are represented using
phonological feature vectors to encourage parameter sharing
between the two languages despite different phoneme invento-
ries. When synthesizing test utterances, we perform automatic
language identification to provide word-level language embed-
dings and apply pronunciation nativization rules to any detected
English words to bring them closer to native Spanish phonology.
In addition to the results of the main Blizzard Challenge evalu-
ation, we present analysis of the impact of nativization strategy
on listener preferences, which may be relevant for evaluation of
code-switching TTS in general.
Index Terms: Blizzard Challenge, speech synthesis, code-
switching

1. Introduction
We submitted an entry to the spoke task of the Blizzard Chal-
lenge 2021, synthesizing Peninsular Spanish speech for texts
containing a small number of English words in each sentence.

The pronunciation of English words by speakers of Penin-
sular Spanish is characterized by nativization into Spanish
phonology [1]. This means that, for example, phonemes that
occur only in English are adjusted to fit the phonological inven-
tory of Spanish. English has always been a common source of
loan words for every Spanish dialect, but even more so in recent
years due to the influence of Anglophone social networks, tech-
nology and mass media, which has resulted in Spanish speak-
ers’ frequent use of everyday English loans such as “sorry, gym,
spoiler, OK, email, online” [2].

The problem for synthesizing Spanish utterances which in-
clude English loan words is that predicting how native Spanish
speakers would pronounce those loan words is subject to cul-
tural and social variables, and in fact there is no unique right
answer in any given case. For example, it is unlikely that even a
bilingual speaker of Spanish and English would adopt a native
pronunciation for an English loan word in a Spanish sentence.
The challenge is therefore to nativize these words to a degree
which is appropriate for the target listeners, here speakers of
Peninsular Spanish. Although previous work has found that
data-driven approaches outperform rule-based methods [1], in
this paper we use a rule-based approach given the lack of avail-
able data and the time to collect it.

We also need to consider how to represent input texts con-
taining a mixture of two languages. Previous work has shown

phonological feature vectors to be a viable input representation
for zero-shot synthesis of unseen phonemes from a second lan-
guage in code-switched text [3], as well as for multilingual TTS
including low-resource languages [4]. Individual phonologi-
cal features (PFs) represent distinctive articulatory aspects of
phonemes such as tongue position, degree of closure and voic-
ing [5], and a particular phoneme can be described using a vec-
tor of PFs. By decomposing phonemes into a universal set of
PFs, we can avoid issues of mismatched phoneme inventories
across multiple languages and more efficiently share acoustic
information between them when pooling training data.

In this paper, we present in detail the TTS system we sub-
mitted for the Blizzard Challenge 2021 spoke task. Our model
is based on the FastPitch architecture [6] with additional word-
level language embeddings, trained with multiple speakers of
Spanish and English using phonological feature inputs. At
synthesis time, words automatically identified as English are
nativized to Spanish phonology through a set of hand-written
rules. In addition to reporting Blizzard test results, we perform
a supplementary evaluation where we focus on comparing the
effects of using phoneme symbols vs. phonological features
and different nativization strategies, while using ground-truth
language identification labels.

2. Data
We trained our system using data from four different speech
corpora, summarized in Table 1.

2.1. Blizzard Challenge 2021

The Blizzard Challenge 2021 data set consists of one Peninsular
Spanish female speaker with 9.5 hours of audio data and match-
ing transcriptions, manually checked. We trimmed silences at
the start and end to normalize them all to 500 milliseconds,
which was necessary to obtain correct forced alignments of the
data, and reduced the total audio duration to 6.4 hours. This
data set contains exclusively Spanish utterances.

2.2. L2-ARCTIC

In order to obtain speech samples of English with a Spanish ac-
cent, we made use of the L2-ARCTIC dataset (v5.0) [7]. This
corpus includes recordings from 24 non-native speakers of En-
glish with different first-language backgrounds including four
Spanish speakers, two male and two female. We used only the
two female Spanish L1 speakers MBMPS and NJS, to match the
gender of the Blizzard speaker. Although the amount of data
per speaker is relatively low (about an hour each), because the
speakers are reading the ARCTIC script [8], the available data
has a balanced phonemic coverage of English. Although the
corpus includes other materials such as manual annotations of
pronunciation errors, we did not make use of them.



Table 1: Summary of training data used, including number of
utterances and total duration in hours.

Corpus Language Speakers Utts Hours

Blizzard 2021 Spanish 1 4900 6.4
L2-ARCTIC English 2 2243 2.3
LJ Speech English 1 2250 4.1
Common Voice Spanish 62 5226 7.3

Total 66 14619 20.0

2.3. LJ Speech

We randomly sampled a subset of the LJ Speech corpus [9] to
match the number of utterances in the L2-ARCTIC data. This
data provides examples of native American English pronunci-
ation. We decided to include American English data (rather
than e.g. British English) based on some pronunciations of En-
glish words by the target Blizzard speaker in the small devel-
opment set provided, for example with post-vocalic /ô/ being
pronounced in the word ‘computer’.

2.4. Mozilla Common Voice

The Mozilla Common Voice (MCV) project collects crowd-
sourced speech recordings with associated text transcriptions
across multiple languages [10]. As a language with a large
web presence, Spanish text prompts for volunteer recording are
largely extracted from Wikipedia articles. We expected this cor-
pus might provide a good source of Spanish utterances with
some degree of code-switching, for example with some proper
nouns included from English.

We selected a subset of validated utterances from the
v6.1/2021-12-11 release of the Spanish portion of Common
Voice. Volunteers may provide some demographic information,
including self-reported accent and gender labels. We sampled
between 50–100 utterances from speakers with at least 50 utter-
ances and Peninsular accent labels. We excluded from consider-
ation any speakers where manual review of 5 random utterances
found multiple different speakers associated with the same ID,
excessive background noise, poor microphone quality or where
recordings appeared to have been made at a lower sampling fre-
quency than 22.05 kHz (based on inspection of spectrograms).
These criteria allowed us to approximately match the number of
utterances in the single-speaker Blizzard data set, with 5226 ut-
terances sampled from 12 female and 50 male speakers. We
found that introducing a large number of additional Spanish
speakers improved the ability of our model to maintain the Bliz-
zard speaker’s voice quality when switching language embed-
dings between Spanish and English words in the test utterances.

3. Data processing
3.1. Forced alignment and phonemic transcription

FastPitch requires explicit duration information during training,
for which we used forced alignments generated using the Mon-
treal Forced Aligner (MFA) [11]. We trained a new acoustic
model for each corpus included in our training data (including
speaker adaptation for multi-speaker corpora) rather than using
pre-trained Spanish or English models provided with MFA.

To align the Blizzard data, we used the available MFA
Spanish grapheme-to-phoneme (g2p) conversion model to ob-
tain phonemic transcriptions in the GlobalPhone phone set [12].

Table 2: List of distinctive phonological features.

Category Features

Major class syllabic, consonantal, sonorant
Cavity coronal, anterior, distributed, labial, high,

low, back, round, nasal, lateral, constricted
glottis

Manner continuant, delayed release, tense, long
Source voice, strident, subglottal pressure
Other silence

We made a small correction when we noticed that many words
ending in <-ado> or <-ido> (suffix for participles) were tran-
scribed with the intermediate consonant deleted. Although this
is a valid pronunciation for some Spanish speakers, it did not re-
flect the pronunciation of the Blizzard speaker and as such the
intermediate /d/ was automatically inserted for all correspond-
ing words.

For the English L2-ARCTIC and LJ-Speech corpora,
phonemic transcriptions were generated either by lookup in the
American English (GAM) version of the Combilex lexicon [13]
or using a decision tree-based g2p implemented for the same
phone set in the Festival TTS system [14].

For the Spanish Mozilla Common Voice corpus, alignments
were again made against phonemic transcriptions generated
from the MFA g2p model. Checking a sample of 500 utterances
suggested that around 10% might contain English words, rep-
resenting around 2% of individual word tokens. However, we
were not able to account for this early in the data preparation, so
that automatically generated Spanish pronunciations were used
also for any English words in the corpus, potentially impacting
the quality of the resulting alignments.

3.2. Phonological features

After converting text to phonemic representations, we expanded
atomic phoneme symbols into phonological feature vectors. We
first mapped GlobalPhone and Combilex phones to their corre-
sponding symbols in the International Phonetic Alphabet (IPA)
[15], then to binary PFs using PanPhon [16]. This library con-
verts potentially very fine-grained phonetic transcriptions in-
cluding IPA diacritics to a set of 21 articulatory features sim-
ilar to those laid out in [5]. During forced alignment, we split
any diphthongs into sequences of two vowel symbols to enable
this conversion; affricates are still handled as single symbols by
PanPhon. To this set we added a single additional feature to rep-
resent any silences inserted by MFA, for example introduced by
punctuation. Table 2 lists the feature set used; values are ±1 or
0 where some features are unspecified for certain segments, e.g.
vowel height features on consonants.

We noted two deficiencies in the set of phonological fea-
tures used. First, the featural representations of the alveolar
trill /r/ provided by PanPhon is identical to that of the alveolar
tap /R/, masking a phonemic contrast in Spanish. This caused
our submitted system to make some segmental mistakes, some-
times producing /R/ (the more common sound in our training
data) where /r/ would have been the correct phoneme. Second,
there are no features accounting for lexical stress. We merged
symbols for stressed and unstressed vowels before conversion
to PF vectors, also resulting in some stress assignment errors in
our submitted samples.



3.3. Language identification

We generated word-level language labels for Blizzard evalua-
tion test utterances using the following procedure. First, we
pass the whole utterance through a Spanish-English language
identification model [17]. This is a pre-trained model that uses
a multilingual BERT trained with the LinCE corpus [18], a
benchmark for code-switching tasks. We did not fine-tune the
model to our data. The model outputs a label for every token
in the input string, with four possible values: Spanish, English,
named-entity or other (for punctuation). Many of the words of
English origin in the test data were identified as named-entities,
so these outputs required further disambiguation.

Second, we checked every word labelled as a named-entity
for characters exclusive to Spanish: á, é, ú, ı́, ó and ñ. If any
of these were present, the word was classified as Spanish. Oth-
erwise, the word was passed to a second pre-trained model for
multiple language detection based on N-gram probabilities [19].
If the word was identified as belonging to a Romance language,
then it was classified as Spanish, otherwise as English.

To calculate the accuracy of the labels, we randomly se-
lected a set of 40 utterances from the test data, ensuring that
every sentence had at least one word in English. Of all words,
94.7% were correctly classified, although only 17.5% came
from English. Of English words, 73.2% were correctly iden-
tified, compared to 99.3% of the Spanish words.

3.4. Pronunciation nativization rules

For test utterances, we converted input text to phonemes using
our own rule-based g2p system for detected Spanish words. For
English (or non-Spanish) words, we first retrieved English pro-
nunciations using Combilex resources as for forced alignment.
Then, we applied a series of nativization rules to bring English
pronunciations more in line with Spanish phonology, for exam-
ple inserting an epenthetic /e/ before word-initial /s/, converting
English-only fricative /S/ to shared /tS/ and converting /@/ to full
Spanish vowels based on orthography, e.g. ‘Twitter’ /twIt@ô/
→ /twiteô/. Note that we maintained the English approximant
rhotic /ô/ rather than mapping to Spanish tap or trill. We also
preserved many word-final consonant clusters which typically
do not occur in native Spanish words.

While we tried to produce a consistent and comprehensive
set of English-Spanish transformation rules, there are inevitably
exceptions which cannot be handled. This may also be exacer-
bated by errors in the initial English g2p, itself a challenging
task, feeding into our transformation rules. We did not manu-
ally fix any mistakes at the end of the full g2p pipeline for the
submitted test stimuli, since this would not be possible in a pro-
duction scenario.

4. System description
Our base model architecture is FastPitch [6], building on the ref-
erence implementation from NVIDIA. FastPitch is a sequence-
to-sequence transformer based model, with explicit duration
and fundamental frequency prediction. Symbol embeddings
are summed with positional embeddings as input for the trans-
former encoder. For PF inputs, we replace the phoneme em-
bedding table with a linear layer projecting to hidden represen-
tations of matching dimension (512). Because we are training
our models with multiple speakers, an additional speaker em-
bedding is added to this sum. Finally, a language embedding
is also summed, where the Blizzard data and MCV datasets are
encoded as Spanish and LJ Speech and L2-ARCTIC as English.

Encoder outputs are used to predict normalized fundamen-
tal frequency and duration in frames per symbol. At train-
ing time, ground-truth values are provided by fundamental fre-
quency contours extracted with Parselmouth [20] and durations
from MFA, as described in Section 3.1. The predicted funda-
mental frequency is embedded and summed with the encoder
outputs. The result is upsampled using predicted durations and
input to the transformer decoder. The decoder output is pro-
jected to the mel spectrogram dimensionality.

Our final submitted system used PF inputs derived from
phoneme strings generated using our Spanish g2p and nativiza-
tion rules for English words. Language embeddings were speci-
fied word-by-word according to our automatic language ID sys-
tem. The model was trained for 1000 epochs on the combined
data from all corpora as listed in Table 1. To convert generated
mel spectrograms back to the waveform domain we used Wave-
glow [21], with a pre-trained model from NVIDIA fine-tuned to
the target Blizzard speaker for 450 epochs. Audio samples are
available online.1

5. Blizzard Challenge 2021 evaluation
Systems submitted to the spoke task of the Blizzard Challenge
2021 were evaluated by subjective listening test along three di-
mensions: overall naturalness of synthesized speech, similarity
to the original Blizzard data speaker and acceptability of the
English words included in mostly Spanish utterances. Figures 1
and 2 present box plots of system ratings for naturalness and ac-
ceptability of English words respectively (we omit speaker sim-
ilarity results for brevity, since we do not focus on this aspect
in our own evaluation). Our system (H) is outlined in each plot;
system R represents natural speech from the Blizzard speaker.
Each plot includes responses from all listeners engaged in the
Blizzard evaluation. Differences between systems were tested
for significance using Wilcoxon’s signed rank tests (see [22] for
more details).

Our system received a mean rating of 2.86 for overall natu-
ralness (not significantly different from systems M and D), 2.8
for speaker similarity (not significantly different from A, C, D
and M) and 2.6 for acceptability of English words (not signifi-
cantly different from N).

6. Supplementary listening test
We conducted an additional listening test explicitly comparing
our phoneme- and PF-based systems, using different nativiza-
tion strategies. To avoid the influence of any language ID errors,
we used the same sample of 40 utterances from the Blizzard test
set used to evaluate our language ID system in Section 3.3. We
synthesized the test utterances using the following nativization
strategies for each of phoneme and PF inputs (240 stimuli total):

• Mixed (mix) – Pronunciations and word-level language
embeddings determined by ground-truth language labels

• Nativized (nat) – Pronunciations determined by ground-
truth language labels, all language embeddings set to
Spanish

• Spanish (esp) – All pronunciations produced by Spanish
g2p rules only (no nativization of English words) and all
language embeddings set to Spanish

We expected these systems to range from the most faithful ren-
ditions of English words in mix, through more heavily Spanish-

1https://dan-wells.github.io/blizzard2021

https://dan-wells.github.io/blizzard2021
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Figure 1: Mean opinion scores for all systems submitted to Bliz-
zard evaluation (ours system H).

accented in nat and finally to English interpreted strictly accord-
ing to Spanish orthographical rules in esp. Note that the mix
condition with PF inputs is equivalent to an oracle language ID
version of our submitted system.

We recruited 40 native speakers of Spanish (located in
Spain) through Prolific. Each participant listened to a random
sample of 40 synthesized utterances from the 6 systems under
test. Each synthesized audio file was presented individually
along with its transcription, with English words highlighted us-
ing bold text. We asked participants to respond to three state-
ments on a 5-point Likert scale from “Disagree” to “Agree”:

1. This phrase is very natural.
2. Considering the marked words, this speaker shows mas-

tery of English.
3. I would pronounce the English words the same way.

The average test duration was 19 minutes, and participants were
paid £5 for their time. In total, we gathered 1600 ratings for
each question, with each stimulus rated by 6 or 7 participants
and each system rated an average of 266 times.

6.1. Results

Figures 3–5 show box plots for responses to questions 1–3 re-
spectively. Labels for systems using phonological feature in-
puts are prefixed with F and phonemes with P. Systems are or-
dered by mean naturalness rating, but following [22] we make
no comparisons on that basis.

We tested for significant differences between systems using
pairwise two-sided Mann-Whitney U tests, judged at the 1%
level (Bonferroni-corrected p < 0.00067 for 15 comparisons).
Considering naturalness ratings for pairs of systems using the
same nativization strategy but with different input representa-
tions, there were no significant differences: PF and phoneme
inputs received similar scores. Both F-Mix and F-Nat produced
significantly more natural speech than F-Esp, but were not sig-
nificantly different from each other. There were no significant
differences between any of the phoneme-based systems.
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Figure 2: Acceptability of English words in test utterances for
all systems submitted to Blizzard evaluation (ours system H).
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Figure 3: Naturalness ratings for systems with different input
representations and nativization strategies.

We consider the lack of difference between input represen-
tations to be a result of the application of nativization rules. As-
similating test utterances to Spanish phonology also removed
most of the English-only phonemes which might be expected to
benefit most from the parameter sharing enabled by our phono-
logical feature representations (for example any vowels which
occur only in the smaller English portion of our training data).
The only remaining English phonemes were /ô/ and /@/, rep-
resenting 1% and 0.3% of all phonemes in the test utterances
respectively. During system development we found the intro-
duction of nativization rules to help considerably compared to
passing full English phone sequences through even a PF-based
system, perhaps due to lack of training data with English phones
surrounded by Spanish context, so we considered this trade-off
to be worthwhile.

For ratings of the synthetic speaker’s perceived mastery of
English and similarity of the pronunciations of English words
compared to listening test participants’ own, there were again
no significant differences between systems using the same na-
tivization strategy but different input representations. Within



 1

 2

 3

 4

 5

F-M
ix

F-Nat
P-M

ix
P-Nat

P-Esp
F-Esp

R
a
ti

n
g

System

Figure 4: Ratings of speaker’s knowledge of English for systems
with different input representations and nativization strategies.
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Figure 5: Similarity ratings for English words compared to lis-
tener’s pronunciation for systems with different input represen-
tations and nativization strategies.

both phoneme- and PF-based systems, the mix and nat strate-
gies were rated significantly higher than esp, but again were not
judged significantly differently from each other.

The overall relationship between naturalness ratings and
perceived knowledge of English or listener pronunciation sim-
ilarity varied with the nativization strategy but was not very
strong in any case. We calculated Spearman’s rank correlation
coefficients (ρ) between responses to our naturalness question
and the two English-focused questions separately, giving values
between 0.40 and 0.53 for both PF- and phoneme-based mix and
nat systems and between 0.18 and 0.24 for esp systems. On the
other hand, correlations between apparent English knowledge
and pronunciation similarity were quite high, 0.71 ≤ ρ ≤ 0.85
for all systems. This suggests that listeners were evaluating the
whole sentence for naturalness, including Spanish words and
prosody. For example, Blizzard test utterance 0026 synthesized
by system F-Nat received an average naturalness rating of 2.5,
while averaging 4.0 on the other two questions. After listening
to this sample, we hypothesize that this is due to errors in the
Spanish part of the sentence: the presence of the mispronuncia-
tion of /r/ at the start of a word and unnatural intonation.

The two questions regarding the English words were de-
signed to see if the listeners could decouple their own pronunci-
ations from what they consider to be a knowledgeable speaker
of English. Overall, listeners preferred to align their pronun-
ciation with the strategy that was closer to English, i.e. mixed.
However, for some cases we saw a mismatch between their own
pronunciations and what was considered a knowledgeable pro-
nunciation. For example, utterance 0076 from system P-Esp

had an average rating of 3.0 on knowledge of English and 3.8
on pronunciation similarity to the listener. Interestingly, the En-
glish word in this utterance was “spoiler”, one of the most fre-
quent English words used in Spanish identified by [2]. In this
system, even English words are synthesized with a Spanish lan-
guage embedding, and here “spoiler” is pronounced with a very
strong /e/ sound before the initial /s/, complying with Spanish
syllabic structure (and a very common pronunciation among na-
tive speakers of Spanish). This utterance was rated 2.4 for nat-
uralness on average; the Spanish words had a strange rhythm
and intonation. Utterance 0194 from system P-Mix showed the
inverse pattern, with an average rating of 4.3 for English knowl-
edge but 3.1 for pronunciation similarity (with a naturalness of
3.1). The English words in this utterance were “circuit breaker”
(not a very common term in everyday Spanish), with a pronun-
ciation close to the English especially for the vowels, where
a Spanish speaker would more commonly map them to near
Spanish equivalents.

7. Conclusion

We used phonological feature vector representations to stream-
line multi-lingual TTS training for synthesizing Spanish utter-
ances also containing some English words in our submission to
the spoke task of the Blizzard Challenge 2021. Our final sys-
tem also incorporated a series of nativization rules informed by
automatic language identification over test sentences, through
which we brought the pronunciations of detected English words
more in line with Spanish phonology. While application of
these rules somewhat negates the potential benefits of using
PFs during model training by effectively collapsing test utter-
ances to the Spanish phoneme inventory, we nonetheless found
it beneficial for our submitted system. Given that our systems
were trained on data combining native and non-native speakers
of English and native speakers of Spanish, but without any ex-
plicit code-switching labels, we found our performance in the
Blizzard Challenge evaluation encouraging. In future work, we
want to systematically test which of these data sets brought the
greatest improvement to our systems.

We also conducted a supplementary listening test which
showed that evaluating preferences between nativization strate-
gies is a complicated task. Still, we can draw some conclusions
from our analysis of results from this test. Our evaluation is
limited by the quality of the Spanish portions of utterances syn-
thesized by our system: to evaluate properly only the nativiza-
tion of English words, we would first need perfect generation of
Spanish. The case analysis shows that although listeners tend
to report that their own pronunciations align with systems that
show a pronunciation closest to English, they can still notice
in some cases that these don’t match. If we want to obtain a
transparent preference from listeners with respect to nativiza-
tion strategy, we need to take this into account with careful de-
sign of test sentences, considering especially the frequency of
use of the target English words by listeners in their own every-
day speech.

Acknowledgements: Dan Wells is supported by the UKRI
Centre for Doctoral Training in Natural Language Processing,
funded by the UKRI (grant EP/S022481/1) and the University
of Edinburgh, School of Informatics and School of Philosophy,
Psychology & Language Sciences. Pilar Oplustil-Gallegos is
supported by: ANID, Becas Chile, nº 72190135.



8. References
[1] T. Polyakova and A. Bonafonte Cávez, “Nativization of english
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[6] A. Łańcucki, “Fastpitch: Parallel Text-to-Speech with Pitch Pre-
diction,” in ICASSP 2021 - 2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp.
6588–6592.

[7] G. Zhao, S. Sonsaat, A. Silpachai, I. Lucic, E. Chukharev-
Hudilainen, J. Levis, and R. Gutierrez-Osuna, “L2-arctic: A
non-native english speech corpus,” in Proc. Interspeech, 2018,
p. 2783–2787. [Online]. Available: http://dx.doi.org/10.21437/
Interspeech.2018-1110

[8] J. Kominek and A. W. Black, “The CMU Arctic speech
databases,” in Fifth ISCA workshop on speech synthesis, 2004.

[9] K. Ito and L. Johnson, “The LJ Speech Dataset,” 2017. [Online].
Available: https://keithito.com/LJ-Speech-Dataset

[10] R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler,
J. Meyer, R. Morais, L. Saunders, F. M. Tyers, and G. Weber,
“Common Voice: A Massively-Multilingual Speech Corpus,” in
Proceedings of the 12th Conference on Language Resources and
Evaluation (LREC 2020), 2020, pp. 4218–4222.

[11] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, and
M. Sonderegger, “Montreal Forced Aligner (version 2.0.0
alpha 7),” 2021. [Online]. Available: https://github.com/
MontrealCorpusTools/Montreal-Forced-Aligner

[12] T. Schultz and T. Schlippe, “GlobalPhone: Pronunciation Dictio-
naries in 20 Languages,” in Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14).
European Language Resources Association (ELRA), 2014, pp.
337–341.

[13] K. Richmond, R. A. J. Clark, and S. Fitt, “Robust LTS Rules with
the Combilex Speech Technology Lexicon,” in Interspeech 2009,
2009, pp. 1295–1298.

[14] R. A. J. Clark, K. Richmond, and S. King, “Festival 2 – Build
Your Own General Purpose Unit Selection Speech Synthesiser,”
in 5th ISCA Speech Synthesis Workshop, 2004, pp. 173–178.

[15] International Phonetic Association, Handbook of the Interna-
tional Phonetic Association: A Guide to the Use of the Interna-
tional Phonetic Alphabet. Cambridge University Press, 1999.

[16] D. R. Mortensen, P. Littell, A. Bharadwaj, K. Goyal, C. Dyer, and
L. Levin, “PanPhon: A Resource for Mapping IPA Segments to
Articulatory Feature Vectors,” in Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics:
Technical Papers. The COLING 2016 Organizing Committee,
2016, pp. 3475–3484.

[17] S. Sarker, “CodeSwitch,” 2020. [Online]. Available: https:
//github.com/sagorbrur/codeswitch

[18] G. Aguilar, S. Kar, and T. Solorio, “LinCE: A Centralized Bench-
mark for Linguistic Code-switching Evaluation,” in Proceedings
of the 12th Language Resources and Evaluation Conference.
Marseille, France: European Language Resources Association,
2020, pp. 1803–1813.

[19] “PyLaDe - Language Detection tool.” [Online]. Available:
https://github.com/fievelk/pylade

[20] Y. Jadoul, B. Thompson, and B. de Boer, “Introducing Parsel-
mouth: A Python interface to Praat,” Journal of Phonetics,
vol. 71, pp. 1–15, 2018.

[21] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A Flow-
based Generative Network for Speech Synthesis,” in ICASSP 2019
- 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2019, pp. 3617–3621.

[22] R. A. J. Clark, M. Podsiadło, M. Fraser, C. Mayo, and S. King,
“Statistical analysis of the Blizzard Challenge 2007 listening test
results,” in The Blizzard Challenge 2007, 2007, pp. 1–6.

http://dx.doi.org/10.21437/Interspeech.2018-1110
http://dx.doi.org/10.21437/Interspeech.2018-1110
https://keithito.com/LJ-Speech-Dataset
https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner
https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner
https://github.com/sagorbrur/codeswitch
https://github.com/sagorbrur/codeswitch
https://github.com/fievelk/pylade

	 Introduction
	 Data
	 Blizzard Challenge 2021
	 L2-ARCTIC
	 LJ Speech
	 Mozilla Common Voice

	 Data processing
	 Forced alignment and phonemic transcription
	 Phonological features
	 Language identification
	 Pronunciation nativization rules

	 System description
	 Blizzard Challenge 2021 evaluation
	 Supplementary listening test
	 Results

	 Conclusion
	 References

