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Abstract
For our contribution to the Blizzard Challenge 2021, we built
a non-autoregressive speech synthesis system that transforms
phoneme inputs from a phonemiser into spectrogram frames.
A GAN based vocoder then transforms the spectrogram into a
waveform. We handle code-switching by altering the phonemiser
based on the output of a language identification system. Non-
native phonemes are manually mapped to their closest native
representation. An interactive demo is available1.
Index Terms: Non-autoregressive synthesis, GAN vocoder,
code-switching aware

1. Introduction
The Blizzard Challenge is a yearly occurring shared task in
the text-to-speech synthesis (TTS) community, with extensive
evaluation by human listeners. This year’s challenge consists of
a “hub” task and a “spoke” task. For both tasks, participants are
required to build a voice for synthesising European Spanish texts.
In the hub task, these texts contain exclusively Spanish words,
whereas in the spoke task, the texts contain a small number
of English words, i.e. there is code-switching in the Spanish
texts. Participants are provided with approx. 5 hours of high-
quality audio training data read by one female European Spanish
speaker. These data do not contain code-switching; there are
however some exceptions that we discuss below. In addition,
ten utterances that contain more code-switching are provided as
development data. Usage of additional audio data is explicitly
allowed (for either task, but subject to the limitation that all in all
no more than 100 hours of data are used for building the voice).

Our contribution to the challenge consists in a neural net-
work (NN) system. NN systems have started to outperform con-
catenative systems in terms of intelligibility and even in terms of
naturalness [1, 2, 3, 4, 5, 6]. One of the few disadvantages left
are their computational cost, their tendency to sometimes skip
or repeat parts of input words, and the lack of prosody control.
DeepVoice [1] proposes modifications to speed up inference,
however it only achieves close-to-human mean opinion scores
(MOS) with a model that still runs slower than real time, and uses
ground-truth F0 values and durations instead of predicted ones.
Similarly TransformerTTS [3], FastSpeech [5] and FastSpeech
2 [6] propose new architectures to address this issue; however
FastSpeech for instance does not predict optimal durations, and
still sometimes skips or repeats parts of the utterance. Thus these
issues are addressed again in the FastSpeech 2 paper [6]. Our ul-
timate research goal, irrespective of the challenge, was to create
an easy-to-use toolkit for speech synthesis which can be used
even without access to significant computational resources. Our
contribution to the challenge as well as the competing candidate
systems in our preliminary experiments are instances of models
trained with said toolkit, IMS Toucan.

1https://github.com/DigitalPhonetics/
IMS-Toucan#demonstration

We will describe the two architectures used in our candidate
systems in more detail in section 2 below. We will then discuss
aspects related to code-switching required for the spoke task in
section 3, before we introduce the IMS Toucan Speech Synthe-
sis Toolkit in section 4. Next we will give more details about
the systems employed for the two challenge tasks in section 5.
Finally we present the evaluation results from the challenge in
section 6 before concluding in section 7.

2. Related work
As stated in the introduction, issues in NN synthesis are speed
at inference time and efficiency at training time. In this vein,
TransformerTTS [3] aims to improve inference speed by par-
allelising more calculations. It does so by using most of the
Tacotron 2 [2] architecture, but replacing the recurrent NN com-
ponents with the Transformer architecture, introduced in [4].
Like most other NN models, it generates spectrogram frames
from phoneme embeddings. In contrast to FastSpeech (see be-
low), it can train on text-speech pairs without explicit alignment
information. It learns which part of the input belongs to which
part of the output by using an attention mechanism, as intro-
duced in [4]. The encoded space that the attention is applied
to is subdivided into multiple attention heads, each of which
calculates one routing of information from inputs to outputs.
Using multiple heads improves the parallelisation capability of
the system [3]. The self-attention allows modeling longer depen-
dencies and is claimed to improve the adequacy of the overall
sentence prosody. Having generated spectrogram frames in this
way, TransformerTTS then employs WaveNet [7], an autoregres-
sive NN vocoder, to generate the actual audio signal. WaveNet
is well known for its superior audio quality, however due to its
autoregressive nature it is relatively slow.

The issue of inference speed is also addressed by FastSpeech
[5] and FastSpeech 2 [6]. Both FastSpeech systems convert their
input to phoneme embeddings and produce mel spectrogram
frames as output, which are then passed to another network
(WaveGlow [8] for FastSpeech, Parallel WaveGAN [9] for Fast-
Speech 2) to generate actual audio signals. (FastSpeech 2 can
also directly generate audio signals without generating mel spec-
trograms.) Both synthesise spectrograms from text in a non-
autoregressive manner, i.e. without conditioning the prediction
of spectrogram frames on previously generated frames. This
is achieved by employing attention alignments from an autore-
gressive teacher model to predict the number of spectogram
frames needed for each input embedding, thus allowing paral-
lelisation of the generation process to speed up inference. The
teacher model they propose is the TransformerTTS model [3]
discussed above. In this model, at least one attention head learns
the temporal alignment between input frames and output frames.
The information on which input frame the head attends to for
each output frame can be distilled into the duration information
required for training the FastSpeech models.

In contrast to its predecessor, and also to other end-to-end
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systems, FastSpeech 2 elegantly solves the mode collapse prob-
lem by predicting the pitch contour and the energy contour in
dedicated submodules. While FastSpeech learns to predict dura-
tions for each phoneme embedding implicitly by means of the
teacher model during training, FastSpeech 2 uses ground truth
durations as determined by forced alignment to this end. Using
a duration predictor enables frames to be computed in parallel,
which is not only faster; but also eliminates the early stopping
and repetition problems that many autoregressive systems strug-
gle with.

For our contribution we considered both FastSpeech 2 [6]
and TransformerTTS [3]. However we make use of the MelGAN
architecture [10] for vocoding instead of WaveGlow [8], Parallel
WaveGAN [9], or WaveNet [7]. As the name implies, MelGAN
is a Generative Adversarial Network (GAN) [11] and consists
of a fully convolutional generator that takes a full mel-scaled
spectrogram as input. Since the amount of wave samples for
a given amount of spectrogram frames can be calculated if the
FFT window size and the hop size of the spectrogram are known,
it is capable of calculating all of the wave samples in parallel,
making it extremely quick. The spectrogram inversion has only
one major problem, which is the reconstruction of the missing
phase-shift information, which is very difficult to quantify in an
objective function. To fix this, MelGAN employs an ensemble
of discriminators, which operate on different scales. While
the result is not perfectly natural, we find it offered the best
quality/speed trade-off at the time of the implementation. At the
time of writing this paper however, we find that the more recent
HiFi-GAN [12] now outperforms MelGAN.

3. Code-switching
While modern TTS systems do impressively well in the language
they are trained on, natural language often is not purely mono-
lingual. In reality, sentences can contain a considerable amount
of foreign words. This phenomenon is known as code-switchig
and is addressed by this year’s Blizzard Challenge in the spoke
task. Code-switching is difficult for modern TTS because it
usually requires synthesising phonemes that are not part of the
phoneme inventory of the synthesised language, and therefore
will not be present in the training data . One option is to employ
additional data in the code-switched language that can be used to
tune the NN model so it can synthesise speech in both languages.
However, since the phoneme embeddings are a simple lookup
table and the system would have no way to distinguish between
phones in one language and phones in another language, the sys-
tem would likely collapse the phonotactics of the two languages,
hurting performance in the non-codeswitched language.

An additional consideration is that code-switching is also a
challenge for humans, and that humans are rarely perfect in doing
so. Even if readers are highly competent speakers of the code-
switched language, they will almost never be native speakers
of that language. For this scenario, the Perceptual Assimilation
Model (PAM) [13, 14] predicts that speakers are more likely to
correctly produce foreign phoneme categories with native-like
proficiency if these categories are not too close to categories
in their native language (L1), while they are expected to map
phoneme categories of the code-switched language that are close
to L1 categories onto these L1 categories.

The assumption above was corroborated by an analysis of
the training and development data. We found that even the
(theoretically all-Spanish) training data already contain a few
instances of code-switching, underlining the ubiquity of this
phenomenon. Confirming our expectations, the speaker rarely

train 2204 Reflexiona y piensa que esto es to-
davı́a mejor que Grassville.

train 11429 ¿Y si le pides a Hornblower que nos
lleve allı́?

dev 14988 Mickey’s Music Festival, que estos
dı́as se representa en el Palacio de
Congresos de Granada.

Table 1: Examples of code-switching from training and develop-
ment data.

produces perfectly English pronunciation in these cases. Con-
sider the examples listed in table 1. For utterance 2204 from
the training data the speaker would be expected to code-switch
for the English name Grassville, which should be pronounced
with a [g] at the beginning, and an [æ] vowel in the first sylla-
ble. However the speaker maps these to native Spanish [È] and
[a], respectively. For utterance 11429, the deviation from the
correct English pronunciation is even more obvious: instead of
something like [hoônbloU< Ä], the speaker produces [xomblaU< eR].
This shows that she is aiming for English pronunciation: in-
stead of producing a silent /h/, as would be expected for native
Spanish words with orthographic h, she replaces the English [h]
by [x]. However, she assimilates [n] to [m] following Spanish
phonological rules in the context of the upcoming labial [b], and
she realises the single [Ä] by the sequence [eR]. Similarly the
development data show that the speaker in code-switching cases
usually aims for the English pronunciation (for instance, pro-
ducing Music in utterance dev 14988 listed above as [mjusik]
rather than Spanish [musik]), but that she also maps most English
phoneme categories to Spanish ones (for instance, [z] to [s] in
this example).

We take this observations as an indication that a TTS system
does not necessarily have to synthesise code-switched phoneme
categories with the perfection of a native speaker; instead it is
desirable to achieve a convincing sounding, natural, possibly
slightly accented version of the code-switched utterance parts,
similar to what a trained reader with a reasonable knowledge
of that language would produce. Our solution thus consists in
mapping English phoneme categories to close categories that the
native speaker employed in the training data.

4. The IMS Toucan toolkit

The IMS Speech Synthesis Toolkit (IMS Toucan), was developed
as a tool specifically for teaching speech synthesis to newcomers
to the field. It provides implementations of Tacotron 2 [2], Trans-
formerTTS [3], FastSpeech 2 [6], MelGAN [10], and HiFi-GAN
[12], which are packaged into easy to use interfaces.

Our PyTorch modules of Tacotron 2, TransformerTTS and
FastSpeech 2 are closely derived from the ESPnet toolkit [15, 16].
The main difference between IMS Toucan and ESPnet is that
in IMS Toucan all of the models and procedures are wrapped
in pure python and are simplified as much as possible, whereas
ESPnet contains unified interfaces for speech recognition, speech
enhancement, speech translation and much more, which can be
overwhelming. Furthermore the IMS Toucan training interfaces
are modular, yet inference interfaces combine a synthesis and
a vocoder model, to enable models to be used in other projects
easily. The PyTorch modules of MelGAN and HiFi-GAN are



closely derived from another ESPnet related repository2.
Our implementation of FastSpeech 2 contains two signifi-

cant changes from the original paper. The first is the averaging
of the pitch values and energy values for each phoneme ac-
cording to its duration, as introduced by FastPitch [17], and as
implemented in ESPnet [16]. This allows for great controlla-
bility, as the pitch and energy (and duration) values for each
phoneme can be overwritten at inference time, effectively con-
trolling most perceptual aspects of the produced speech at a very
fine-grained level. While this is an added bonus to our system,
we did not make use of it in the Blizzard Challenge. The second
big change is the use of the convolution-augmented transformer
(Conformer), introduced in [18], as the encoder and decoder,
also as implemented in ESPnet [16]. This architecture was built
with speech recognition in mind, however we find that it also
performs very well for speech synthesis, as is also shown in [19].

Now that the toolkit is completed and thoroughly tested, it
is freely available3.

5. Candidate systems for the challenge
Our challenge entry does not use the currently released version of
IMS Toucan, but an earlier development version. We built multi-
ple models to compare in preliminary experiments, described in
detail later in this section. We use a multi-stage system, starting
with text processing, then predicting spectrogram frames using
either a FastSpeech 2 model or a TransformerTTS model and
finally transforming the spectrogram into a waveform.

Text processing For text processing, we use an open source
phonemiser4 with espeak-ng5 as its backend. The phonemiser
performs rudimentary text cleaning and then transforms the given
input text into a sequence of IPA characters, including prosodic
markers, such as lengthening and lexical stress. We chose to
remove this suprasegmental information from the phoneme se-
quence and leave those properties to the two end-to-end ap-
proaches we employ. This is beneficial because the part of the
networks concerned with the upsampling of the input frames to
the output frames gets confused by non-monotonic alignments
and overlaps in the durations of input frames.

FastSpeech 2 For the FastSpeech 2 based candidate, we per-
formed forced alignment using the Aligner [20] with the calcu-
lated phoneme sequences, mapping the phoneme inventory of
the phonemiser to that of the Aligner to get the duration infor-
mation needed. We then use the Dio and Stonemask algorithms
to extract pitch contour and energy contour [21]. Then we aver-
age the values for pitch and energy over all spectrogram frames
which belong to one phoneme according to the durations that
the Aligner produces. The phonemes are then transformed into
embeddings with random initialisations, using a simple lookup-
table based approach. The phoneme embeddings acquire their
meaning through the gradient-descent based training over time.
The phoneme embeddings are then fed into the FastSpeech 2
module of IMS Toucan to generate a spectrogram.

2https://github.com/kan-bayashi/
ParallelWaveGAN

3https://github.com/DigitalPhonetics/
IMS-Toucan

4https://github.com/bootphon/phonemiser
5https://github.com/espeak-ng/espeak-ng

TransformerTTS To train the TransformerTTS candidate, we
apply the same phonemising step and the same lookup table
for vectorising the phonemes. Since TransformerTTS does not
require alignments, pitch and energy contour, we train the map-
ping from vectorized phoneme sequence to spectrogram frames
directly using the TransformerTTS module of IMS Toucan.

Audio processing We use 16kHz as the audio sampling rate
because we find it to be sufficient with respect to quality, faster
with respect to inference speed, and it helps with model con-
vergence during training. As our spectrogram representation,
we use 80 mel-frequency buckets. We found that normalising
the audios to always contain 250ms of silence in the beginning
and end of an utterance, as well as adding a begin-of-sentence
pseudo-token to the beginning and a silence marker to the end of
the text during training helped the model produce more natural
prosody. Furthermore we found that adding a silence marker to
the end of any utterance during inference significantly improves
the naturalness of the synthesized speech.

We trained both the FastSpeech 2 model as well as the
TransformerTTS model for 32 hours on an NVIDIA RTX 3090.
We trained the MelGAN model for 14 hours on an NVIDIA
GTX TITAN X. Our FastSpeech2 based system achieves a Real-
Time-Factor6 of 0.5 on CPU (Core i7-4600U) and 0.05 on GPU
(NVIDIA RTX 2070) to get from text to waveform. The same
measurements for our TransformerTTS based candidate yield
1.8 on CPU and 0.2 on GPU.

Modifications for the spoke task Given our observations in
section 3 of how the human speaker realises code-switching, we
decided that due to the relatively pronounced Spanish accent of
the speaker, it would be more appropriate and more convincing
to define mappings of English to Spanish phonemes than to
try and produce accent-free English code-switching. With this
premise, we can avoid the issue of collapsing phonemes of both
languages. By that, code-switching is reduced to a problem of
G2P, which we solve by integrating a language identification
(LID) system into our text-preprocessing frontend.

We use the Spanish-English LID module of the CodeSwitch7

NLP tool, which is based on a multilingual BERT model. This
tool takes a code-switched sentence as input and provides a token-
wise annotation with language tags for Spanish (spa), or English
(en). Additionally, there is a special tag ne denoting named
entities. However, regarding ne tokens, we cannot differentiate
between entities with Spanish (e.g. ”Granada”), English (e.g.
”New York”), or other (e.g. ”Berlin”, ”Shiraito”) pronunciation.
We therefore added a hand-crafted lexicon of important English
state and city names, which we annotate as en, and default all
other ne to spa, mimicking the Spanish speaker’s treatment of
foreign names, who seems to realise names that are not obviously
English following Spanish pronunciation rules.

We find that our LID tool overestimates the amount of code-
switched tokens. Thus, we further filter en-tagged tokens and
keep them only if they (a) occur within a sequence of at least two
code-switched tokens, and/or (b) contain character combinations
that do not occur in Spanish native words. We consider this
an acceptable trade-off between accurately identifying English
words and keeping our system comprehensible.

Based on the language annotation of each token, we switch
our phonemiser to either Spanish or English. Since our model

6Defined as the amount of seconds it takes to produce one second of
audio; smaller is better.

7https://github.com/sagorbrur/codeswitch
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is trained on a Spanish phoneme set only, code-switched tokens
still may contain unseen phonemes. Thus, following our analysis
of how the human speaker produces code-switched segments, we
map (sequences of) English phonemes to the most appropriate
Spanish phoneme or sequence of phonemes. Our hand-crafted
mapping rules can be seen in table 2. Furthermore we add
a pause whenever a language switch occurs and the switched
segment is longer than two words, because we found that this
improves the naturalness of the code-switching significantly.

en spa en spa en spa en spa

OI oI æ a dZ tS ô R
oU o U u g È R t
Äô eR O o v B 1 i
Ä eR A o z s 5 a
3 ER 2 a Z S
@ e I i h x

Table 2: Mappings from English to Spanish phonemes

Preliminary experiments For the challenge contribution, we
investigated several factors. We were interested whether the
autoregressive TransformerTTS or the non-autoregressive Fast-
Speech 2-based model performed better, especially given the fact
that 5 hours of training data is comparably small for NN TTS.
Further we wanted to test whether the knowledge-distillation
based durations of the TransfomerTTS teacher in FastSpeech
2 are sufficient, or if ground-truth durations from the Aligner
are needed to get best results. And finally we wanted to see
whether the 5 hours of training data were sufficient, or whether
we can achieve improvements by using additional data. To that
end, we used an additional 50h of freely available data from an-
other speaker8. Since the data contained utterances that were cut
slightly before word endings, we performed some cleaning based
on the results of our forced alignment to eliminate these prob-
lematic utterances. We then used the data to pre-train our model
and used the Blizzard training data for fine-tuning afterwards.

In order to decide which system to submit to the listening
test, we built 6 models using all possible combinations of the
factors listed above. Out of these we picked the one with the
best robustness and naturalness according to our own subjective
perception. Those six combinations are displayed in table 3.

Architecture Pretraining Duration Extraction

TransformerTTS Yes/No -
FastSpeech 2 Yes/No Knowledge Distillation
FastSpeech 2 Yes/No Aligner

Table 3: Overview of candidate systems for the challenge.

Surprisingly, we find that the performance given more data
only increases in the case of TransformerTTS, because the model
becomes a lot more robust, even if the naturalness suffers a bit.
The performance of our FastSpeech 2 systems always decreases
when pre-training on the larger dataset. This is likely due to
the synthesis being trained as a single speaker system, yet the
speakers of the two corpora are very different, both with respect
to their voice, as well as their speaking style.

8https://www.kaggle.com/carlfm01/
120h-spanish-speech

The TransformerTTS system in general produces natural
and intelligible speech, however it makes more mistakes and
suffers from unnatural prosody. The frequent repetitions in
the phonotactics of Spanish tend to trigger the repeating word
problem in the autoregressive system. We thus find the non-
autoregressive TTS without pre-training to be the best in all of
our pairwise comparisons. The impact of Aligner-based dura-
tions versus knowledge-distillation based durations is also very
noticeable. The model trained on distilled duration informa-
tion produces very unnatural prosody, likely due to mistakes in
duration leading to follow-up mistakes in phoneme-averaged
pitch and duration predictor. Furthermore, the system without
proper durations sometimes leaves out phonemes entirely, which
it likely picked up from the repeating-word confusion of the
teacher-model, even when using teacher-forcing to generate the
attention-based alignments. The FastSpeech 2 model trained
with durations derived from the Aligner produces accurate pitch
and energy contours, properly articulates all of the phonemes
and even handles silences and pauses remarkably well. This
is illustrated in figure 1. The lower part of the graphic shows
the spectrogram that the FastSpeech 2 model produces for an
utterance that contains severe code-switching (50% of the words
are English). The spectrogram includes the phoneme boundaries
as predicted by the duration model within FastSpeech 2. The
corresponding phonemes for each segment are displayed below
in IPA notation. The top part of the graphic shows the wave
that the MelGAN model produces for this spectrogram. It can
be seen that the predicted phoneme boundaries match very well
with phoneme boundaries in the spectrogram. This was not the
case when using durations produced by knowledge distillation.
We conclude our preliminary experimentation with the finding
that using homogeneous and correctly annotated but fewer data
is better than using many hours of training data, i.e. it cannot
always be assumed that the model generalises over imperfections
given enough data.

0 10000 20000 30000 40000 50000

Death Cab for Cutie es una gran banda.

+ d k a b f o k j u t i ~ e s un a a mba n d a . ~ ~

Figure 1: Example output of the system selected for the challenge.
˜ denotes silence, + denotes begin-of-sentence.

6. Evaluation
This year 12 teams participated in the hub task, and 10 in the
spoke task. Our system is identified as the letter N. The letter R
denotes natural speech of the original speaker for reference.

Hub task All systems, including natural speech, were rated
according to mean opinion scores (MOS) regarding naturalness
and similarity to the original speaker. Please note that mean
scores and their standard deviation may be misleading, as the
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scores do not meet the normality requirements for parametric
and descriptive statistics. The same is true for the evaluation
of the spoke task. Further, intelligibility tests were performed
where listeners were asked to type in what they heard. We report
absolute scores for naturalness in figure 2, and word error rates
(WER) for an intelligibility test are shown in figure 3. We attest
our comparatively low absolute MOS scores to the low fidelity of
16kHz that we chose and the high pitched hum, which MelGAN
sometimes produces during segments that should be silent. The
artefacts that are introduced by MelGAN are most likely also the
reason for the relatively high WER of our system.

Figure 2: Naturalness scores in the hub task

Figure 3: Intelligibility on semantically unpredictable sentences

A B C D E F G I J K L R

Figure 4: Similarity of other participating systems to original
speaker, relative to our system. White: significantly better; Gray:
equal; Black: significantly worse

Regarding similarity to original speaker in the hub task, we
report the scores for our system regarding statistically significant
differences using Wilcoxon’s signed rank tests in figure 4. Sys-
tems B and C are the only two other systems using a sampling
rate of 16kHz. The results thus indicate that all systems which
used a higher fidelity performed significantly better than ours
(white cells), while we perform on par with the two other 16
kHz systems (gray cells), and outperform system L (black cell).
We see these results as indicative of the fidelity having the most
impact on the MOS of similarity and naturalness.

Spoke task For the spoke task, listeners additionally rated the
acceptability of English words on a score from 1 to 5, shown in
figure 5. Besides the aforementioned weaknesses of our system
regarding sample rate and choice of vocoder, we attribute lower
acceptability scores to failures in language identification. Figure
6 again shows the differences of our system to other systems in

the spoke task according to Wilcoxon’s signed rank tests. Our
approach on code-switching is on par with or better than half of
the other submitted systems.

Figure 5: Acceptability of English words

Acc A C D E H I K L M R
Nat A C D E H I K L M R
Sim A C D E H I K L M R

Figure 6: Acceptability, Naturalness and Similarity of other
systems relative to ours. White: significantly better; Gray: equal;
Black: significantly worse

7. Conclusions and Outlook
Synthesising Spanish as well as code-switched Spanish-English
utterances using IMS Toucan yields speech of good quality with
extremely fast training and inference time compared to other NN
systems even when using no more than five hours of training
data. Reducing the problem of code-switching in synthesis to a
problem of G2P seems to work well and is similar to how human
speakers produce code-switched segments. Mapping non-native
phones to their closest available counterparts is however quite
labour intensive. We will address this aspect in future work.

Regarding naturalness and audio quality, we identify the use
of a low fidelity and the MelGAN architecture for vocoding as
key factors. Fidelity can easily be increased, however a higher
fidelity also leads to longer runtime and increased hardware
requirements. We consider keeping those two attributes of a
system low to be equally crucial as a good naturalness. These
properties are unfortunately not reflected in the scores of the
challenge. To address the second factor, the high pitched hum of
MelGAN, we find that the aforementioned HiFi-GAN with its
multi periodicity discriminator does not have this problem, while
maintaining the high inference speeds and low computational
costs. At the time of writing this paper, we have already extended
IMS Toucan with a HiFi-GAN vocoder.

Our results further confirm that non-autoregressive synthesis
is superior to autoregressive synthesis with respect to robust-
ness, speed and quality, as expected. The five hours of training
data given are already sufficient to train a high quality non-
autoregressive TTS. However, in our opinion it highly depends
on the quality of the alignments and the uniformity of the data, if
no further distinguishing features, such as embeddings of speaker
and speaking style, are given.
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