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Abstract
In this paper, we introduce the bilingual text-to-speech sys-
tem from IOA-ThinkIT to Blizzard Challenge 2021. This
year’s challenge aims to build a Spanish speech synthesis sys-
tem, which also supports Spanish-English code-switch synthe-
sis. We model the pronunciation, style and duration separately.
For style modeling, Our approach adopts an analysis-synthesis
scheme. At the analysis, a phoneme-level style encoder is uti-
lized to extracted speaker-independent style vectors. Then an
RNN auto-regressive predictor was built for style prediction at
inference. We implement adversarial speaker training to text
encoder of backbone and duration predictor to enable cross-
language timbre transfer and cross-language duration transfer.
Evaluation results provided by the challenge organizers are con-
ducted over intelligibility, naturalness and similarity.
Index Terms: speech synthesis, Blizzard Challenge 2021,
code-switch, bilingual TTS

1. Introduction
The Blizzard Challenge has been held once a year to evaluate
different speech synthesis techniques based on same provided
training database. It has made great contribution to the devel-
opment of speech synthesis. This year Blizzard Challenge has
two tasks:1. Hub task 2021-SH1 to synthesize European Span-
ish give about 5 hours speech data from a female native speaker
of European Spanish; 2. Spoke task 2021-SS1 to synthesize the
code-switch of European Spanish and English give the same
dataset of task 1 while providing several natural recordings of
such sentences as reference.

Speech synthesis aims to synthesis intelligible and natural
speech from text, has a lot of applications in human commu-
nication and has long been a research topic in artificial intelli-
gence, natural language and speech processing [1]. As the de-
velopment of deep neural network, researchers are able to syn-
thesis high-quality speech in recent years. For tradition meth-
ods like concatenating synthesis and statistic parametric speech
synthesis (SPSS) [2], incorporating deep neural network in part
of the TTS pipeline can significantly boost the performance
in both naturalness and prosody. And in recent several years,
speech synthesis systems based on deeper and larger neural
network models have achieved near to human speech natural-
ness. In particular, auto-regressive models like Tacotron [3] [4]
and Wavenet [5] take the advantage of the causal properties of
speech, and demonstrate their strong performance. While tra-
ditional attention based acoustic end-to-end models are lack of
robustness when generating speech, such as some of source text
are repeated or skipped. So there are lots of work proposed for
solving such problems, such as Duration Informed Attention
Network and FastSpeech, which model the duration of phone

* is the corresponding author.

directly to improve the stability and avoid these problems. Be-
sides the base task of neural TTS, there are lots of other re-
searches, such as emotional TTS, Style TTS, code-switch TTS,
multilingual TTS and so on.

There are lots of exploring works on cross-lingual TTS.
[6] presents a multi-lingual and multi-speaker neural TTS
model based on VoiceLoop structure [7] with speaker and lan-
guage embedding networks. [8] use a shared encoder with
language embedding and two sperate language-dependent en-
coders Tacotron-based end-to-end systems by using a Mandarin
and English monolingual speech data of two female speaker. [9]
used a Tacotron2 based model to explore a Mandarin/English
code-switched TTS model, which utilizes speaker embedding
and phoneme-informed attention. [10] presents a multi-lingual
TTS model, which trained on monolingual recordings from a
large number of speakers. It uses a unified phoneme input repre-
sentations and a adversarial loos to decouple speaker identities
from speech content. [11] use cross-lingual voice conversion
to get high quality data in other language, which help code-
switched acoustics model train.

The paper is organized as follows. Section 2 introduce our
system, including text analysis systems, acoustics model and
vocoder. Section 3 presents the results of the benchmark sys-
tems and all the participation. Finally the conclusion is given in
Section 4.

2. System Architecture
We follow the two-stage speech synthesis scheme and use Mel-
spectrum as the intermediate representations. Our system con-
sists of two parts, training and synthesis. At the training phase,
we first prepossess the original data, and then train the spec-
trum model and vocoder. At the synthesis phase, we first do the
text analysis which converts the test manuscripts to phoneme se-
quence and the utilize spectrum model and vocoder to get final
waveform. We will introduce the details as follows.

2.1. Text analysis

The text analysis system mainly consists of graphame-to-
phoneme (G2P) and language identification. We first perform
language identification and then convert each language’s text to
phoneme sequence separately. For Spanish G2P conversion, we
directly consult the pronunciation dictionary since the pronunci-
ation is strictly corresponding to writing form in Spanish. And
we utilize the open source 1 for English G2P conversion. For
language identification, we use open tools 2 and set confidence
3 for each word.

We insert punctuation into phoneme sequence as input in-
stead of use phoneme sequence only. Because punctuation

1https://github.com/Kyubyong/g2p
2https://github.com/facebookresearch/fastText
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Figure 1: The architecture of the spectrum model

mask has a huge impact on intonation. For example, sentence
end with ”?” will have a obvious rising tone.

2.2. Spectrum Model

Follow our previous work [12], our spectrum model consists
of three informational components. As show in Fig.1, which
include fine-grained style encoder, bilingual text encoder, and
speaker embedding, which separately contain dynamic style
information speaker-independent linguistics information, and
static timbre information. Moreover, a decoder component is
added to fuse those information into Mel spectrum. Instead of
training style predictor after style encoder converge, we train
style encoder and style predictor simultaneously. And introduc-
ing a tie loss between encoded and predicted style vectors.

For text encoder, Each language has its phoneme set in our
model, and all languages share the same self-attention based
text encoder. To enable cross-language timbre cloning, we con-
ducted an adversarial speaker classifier with a gradient reversal
layer on the encoding representation to remove residual speaker
information.

For style encoder, the fine-grained style encoder ob-
tains temporal style representations from the aligned Mel-
spectrograms at the phone-level, which maps each Mel-chunk
into a fixed-length representation. We adopt a conditional vari-
ational encoding structure to extract speaker-independent style
information, enabling cross-speaker style transfer without con-
taminating target timbre. We first apply three 2D convolution
layers with batch norm for each segment. Then we add speaker
embedding as conditional input, which is concatenated with the
learned feature map and sent to a bi-directional Gated Recur-
rent Unit (GRU) that maps variable-length representation into
fixed-length vector zs . Then time-independent latent style rep-
resentation z is obtained by passing zs to a variational encoder,
which is introduced to mitigate the sparseness of encoded rep-
resentations. Furthermore, we constrain the dimension of latent
space to 3 to function as an information bottleneck. We assume
a prior distribution, p(z) = N(z; 0, I), and train the model to
maximize the evidence lower bound (ELBO) defined in Equa-
tion 1. We also add an adversarial speaker classifier with a gra-
dient reversal layer over the mapped latent representation.

For style predictor, rather than using convolution layers de-
scribe in our previous work [12], we adopt a stack of feedfor-
ward transformer (FFT) blocks as the encoder of FastSpeech.
Experiments show that predicted style vector is essential for nat-
uralness. As show in 2, to improve the coherence of style pre-

diction, we add a RNN autoregressive layer over FFT blocks.
Which prove to be effective for improving the naturalness on
both tasks. Unlike [13], which introduce a shallow autoregres-
sive layer at the tail of frame decoder, we implement it in the
phoneme encoder while keeping decoder parallel. Phoneme
level auto-regression can improve performance without intro-
ducing too much computation than frame level one. Since our
style encoder vectors are speaker-independent and language-
dependent, style predictor takes phoneme punctuation sequence
and output style vectors. We optimize the style predictor by
minimize the mean square error. The gradient from tie loss also
flow back to style encoder to extract speaker independent style
vectors.
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Figure 2: The structure of the style predictor

For duration predictor, we separately model the duration
predictor instead of integrate it into pronunciation modeling
[14]. We perform the speaker adversarial training using gradient
reversal layer among duration predictor to cross language dura-
tion transfer. Experiment result suggests that it is important for
a stable speaking speed especially in code-switching synthesis.
Similarly, we optimize the duration predictor by minimizing the
mean square error of duration.

For decoder, we follow the implement of FastSpeech [14].
And we expand it to multi-speaker version by introducing
speaker embedding in a table lookup manner. We optimize the
acoustic model by minimizing the mean square error of Mel
spectrograms.



2.3. Neural Vocoder

we adopted 44.1k HIFIGAN for converting Mel spectrum to
the waveform. We train the vocoder over given Spanish dataset.
The code of HIFIGAN is from the official implementation 3. We
modified the transposed convolution’s pad for the odd kernel
size. For 44.1k HIFIGAN, we use upsample rates: [6, 5, 5,
4] and upsample kernel sizes: [12, 10, 10, 8], segment size is
12000, frame hop is 600 and frame length is 2400. And change
resblock kernel size from [3, 7, 11] to [3, 5, 7, 11, 17].

2.4. Data processing

The training data provided by the organizer includes about 5
hours of speech data from a female native speaker of European
Spanish. For English, we use our internal 44.1KHz dataset.
Which is consists of 5 speaker and total duration is 5 hours.
Firstly, the Montreal Force Aligner [15] is used to get the time-
point of the initials and the finals. Secondly, we cut long sen-
tence audio into pieces at the end of the short sentence in train-
ing and target set to ensure each clips’ duration is less than 12.5
s. Finally, we converted the data sampling rate to 44.1kHz,
trim the silence, and normalized audio loudness. Based on the
processed data, we extract an 128-dimension Mel spectrum at
24kHz using a 50 ms frame length, 12.5 ms frame hop, and a
Hann window function. Furthermore, we split out five samples
from the target set as valid set.

3. Results
The listening test results in Blizzard Challenge 2021 were pre-
sented below. In this challenge, there are 13 (12 participating
teams, plus natural speech) and 11 (10 participating teams, plus
natural speech) systems in task 2021-SH1 and task 2021-SS1.
Natural speech is marked as R, and our team identifier is I.

The evaluation comprised sections for task SH1 and task
SS1. Task SH1 evaluates three aspects, including naturalness,
similarity and intelligibility, while task SS1 evaluates natural-
ness, similarity and acceptability of English words.

3.1. Naturalness evaluation

In naturalness evaluating section, each audio sample was eval-
uated over Mean Opinion Score (MOS). Listeners listened to
one sample and chose a score which represented how natural
or unnatural the sentence sounded on a scale of 1 [Completely
Unnatural] to 5 [Completely Natural]. Figure 4 show the box-
plot of all systems’ evaluation results on naturalness in task SH1
and task SS1. Our system achieves an average score of 3.55 and
3.43 in task SH1 and task SS1.

We trained the acoustics model and vocoder separately,
which may cause a mismatch in the system and influence the
naturalness of synthesized speech. After listening to submitted
audios, some examples have low speech quality even if the over
performance is acceptable as shown in 3. For code-switch task
SS1, separated modeling pronunciation, duration, and style are
essential for natural prosody. Speaker adversarial training over
three components enables cross-language timbre transfer, cross-
language duration transfer, and cross-language style transfer, re-
spectively.

3https://github.com/jik876/hifi-gan

Figure 3: MEL spectrogarm generated from our system.
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Figure 4: Boxplot of MOS.

3.2. Similarity evaluation

Figure 5 shows the boxplot of evaluation results of all systems
on Spanish similarity. Our system I achieved the MOS of 3.89
and 3.76 in task SH1 and task SS1. We used only MSE loss
on mel-spectrograms to train the spectrum model, so the model
may lose some detailed information influencing speaker simi-
larity. However, Speaker adversarial training over text encoder
is vital to enable cross-language timbre transfer in SS1.
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Figure 5: Boxplot of SIM.

Figure 6: Boxplot of ACC.

3.3. Acceptability evaluation

Figure 6 shows the boxplot of evaluation results of all systems
on acceptability of English words in task SS1. By conducting
an adversarial speaker classifier with a gradient reversal layer
on the text encoder in acoustics model, our system can decou-
ple the residual speaker information and text information, which

improved the acceptability of English words. It is hard to dis-
tinguish English from Spanish text, which also affects the ac-
ceptability of English words.

3.4. Intelligibility evaluation

The boxplot of PER results for Sharvard test and SUS test in
task SS1 were presented in Figure.7.8. Our team has no native
Spanish speaker, so it is hard to find mistakes in our front-end
models. We perform G2P for Spanish by consulting pronuncia-
tion dictionary download from [15]. It way cause some errors.
We focus more on speaker similarity and speech quality.
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Figure 7: Boxplot of INT SHARVARD.
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4. Conclusions
This paper presents our IOA-ThinkIT system submitted for
Blizzard Challenge 2021. We focus on multilingual spectrum
modeling and model pronunciation, style and duration sepa-
rately. The effectiveness of our system on code-switch synthesis
is successfully confirmed by the official evaluation results.
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