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Abstract

This paper presents the SRCB-SL text-to-speech system that
participated in Blizzard Challenge 2021. This year’s Chal-
lenge was in European Spanish and had come with 5 hours
of clean speech data from a female native speaker. It included
two tasks: a hub task that asked the participant to build a voice
from the provided data and synthesize all-Spanish speech, and
a spoke task in which the target speech contained a few English
words. Our system featured a text analysis - acoustic model
- vocoder pipeline. The text analyzer combined several old
and new function modules to convert input text to a sequence
of Spanish phonemes with prosodic boundary (break) mark-
ers. English phonemes were mapped to their Spanish coun-
terparts in spoke task. The acoustic model was built around
FastSpeech, and converted the phoneme sequences from text
analysis to mel-spectrograms. For vocoder we used HiFi-GAN,
which we trained on Challenge data and fine-tuned using pre-
dicted mel-spectrogram as input. This same system was used
for both tasks. Challenge results showed that our system (iden-
tified as K) worked well by most of the criteria, which validated
the effectiveness of our method.
Index Terms: Blizzard Challenge 2021, FastSpeech, HiFi-
GAN

1. Introduction
The annual Blizzard Challenges are held to help understand and
compare research techniques in building corpus-based speech
synthesizers on the same data. The Challenges have wit-
nessed the progress of text-to-speech (TTS) technology since
2005: From unit concatenation [1, 2] and hidden Markov model
(HMM) based statistical parametric speech synthesis (SPSS)
[3, 4] to latest end-to-end systems [5, 6]. In the past two
years we have seen acoustic models based on Tacotron [7] and
Tacotron2 [8] dominate the Challenge while neural vocoders
like WaveNet [9], WaveRNN [10] and LPCNet [11] supercede
conventional methods like Griffin-Lim (GL) [12], STRAIGHT
[13] and WORLD [14].

This year’s Challenge had two tasks:
• Hub task (2021-SH1): Synthesize speech from texts con-

taining only Spanish words.
• Spoke task (2021-SS1): Synthesize speech from Spanish

texts containing a small number of English words in each sen-
tence.

About 5 hours of European Spanish speech data from a
female native speaker was provided to build the voice from.
10 natural recordings of Spanish-with-English-words sentences
were provided to help explain task SS1. These examples
showed that the English words were expected to carry Spanish
accent.

We participated in both tasks. Our system included three
parts: text analyzer, acoustic model, and vocoder. The text an-
alyzer converted input text to a sequence of Spanish phonemes
with prosodic boundaries. English words in task SS1 were first
converted to English phonemes then mapped to the Spanish
phone set. The acoustic model was based on FastSpeech [15],
which we augmented with phoneme-level latent features to cap-
ture local prosodic variations. This differed from FastSpeech2
[16], which used frame-level, visible prosodic features (pitch
and energy). The acoustic model took Spanish phoneme se-
quence and prosodic boundaries as input to predict frame-level
acoustic features. For vocoder we used HiFi-GAN [17] to re-
construct waveform audio, which offered good balance between
efficiency and quality. We used the same system in both tasks,
with a binary flag to tell the system to bypass English-related
submodules in task SH1.

In the following sections we describe our system and work-
flow in detail, and briefly summarize our results.

2. System description

Spanish

G2P

BC 2021

Database

Forced

alignment

Feature

extraction

Prosody

model

Acoustic 

model
Vocoder

Prosodic boundary 

prediction model 

training

Acoustic model 

training

Vocoder 

training

Text 

analysis

Acoustic feature 

prediction

Waveform 

genetation

Text Audio

Mel-

spectrogram

Phoneme sequence / duration

Prosodic boundary

Text
Synthesized

speech

Data processing

Model training

Synthesis

Figure 1: The overview of our workflow

Figure 1 gives an overview of our workflow, which included
data processing, model training and synthesis stages. In data
processing stage we extracted mel-spectrograms and prepared
annotations for phoneme sequences, phoneme durations, and
prosodic boundaries. In training stage we trained several data-
driven models, including prosody (break and phoneme dura-
tion) prediction model, main acoustic model, and the vocoder,
using only officially provided data and labels derived from it.



In synthesis stage we chained up all submodules into an auto-
mated pipeline to produce the final results for submission. Open
source resources used in different stages are listed in table 1.

Table 1: Open source resources used when building our system

Resource Stage

SoX [18] data processing
Librosa [19] data processing
Montreal Forced Aligner (MFA) [20] data processing
MFA open source models data processing
Pretrained Spanish BERT model model training
Pretrained Multilingual BERT model model training
HiFi-GAN official implementation model training
FastText language identification model synthesis
g2p-en python package synthesis

2.1. Data processing

2.1.1. mel spectrogram

Data provided with the Challenge included 4920 audio files
at 48 kHz sample rate, and corresponding text scripts. We
first down-sampled the audio files to 24 kHz using SoX, and
trimmed leading and trailing silences beyond 0.1s and 0.2s, re-
spectively, using Librosa. We extracted spectrogram using FFT
size 2048, hop size 12.5ms, and window size 50ms. This was
then converted to mel-spectrogram with 80 frequency bands.

2.1.2. Phoneme sequence

We used an internel Mexican Spanish grapheme-to-phoneme
(G2P) conversion module to generate phoneme sequences for
Challenge data. This was a letter-to-sound model based on the
classification and regression tree (CART) [21]. For each letter
in a word the model predicts the corresponding phoneme de-
terministically according to the letter itself and three contextual
letters on either side (7 in total).

2.1.3. Phoneme duration

The phoneme duration label tells the length of each phoneme at
frame (12.5ms) precision. To prepare this label we performed
forced alignment using the MFA toolkit with their open source
Spanish acoustic model1. This forced aligner assigns frames to
phonemes or silences, from which we derived phoneme dura-
tion labels. MFA used a phone set that slightly differed from
ours (MFA 40 phonemes vs. ours 34 phonemes), primarily in
that MFA used diphthongs and we did not. Accordingly we split
MFA diphthongs into monophthongs, so that we could directly
map MFA forced alignment results to our format. Running
MFA required specifying a pronunciation dictionary, which we
generated using MFA’s own G2P model2. We ran an automated
routine to check for inconsistency between MFA’s G2P model
and ours on Challenge scripts, and manually corrected found
differences according to actual pronunciation. The corrections
were written into the pronunciation dictionary before running
the forced aligner.

1https://raw.githubusercontent.com/MontrealCorpusTools/mfa-
models/main/acoustic/spanish.zip

2https://raw.githubusercontent.com/MontrealCorpusTools/mfa-
models/main/g2p/spanish g2p.zip

2.1.4. Prosodic boundary

TTS systems widely employ a hierarchical prosodic structure to
distinguish different levels of breaks in a sentence. The prosodic
boundary label tells how much break is expected at each word
boundary. We annotated the prosodic boundary at each word at
one of three levels: no break, short break and long break, ac-
cording to the silence duration after that word as reported from
forced alignment (2.1.3).

2.2. Model architectures and training

2.2.1. Break predictor

The break predictor predicts the prosodic boundary type (one
of no break, short break, long break) of every word from text.
We used the Bidirectional Encoder Representations from Trans-
formers (BERT) [22] model for this job. More concretely, we
took two open source pre-trained BERT models, one for Span-
ish text [23]3 which we call BERT-ES, the other for multilingual
cased text4 which we call BERT-ML. We fine-tuned both BERT-
ES and BERT-ML on Challenge scripts to predict the prepared
prosodic boundary labels, supervised with cross-entropy objec-
tive.

2.2.2. Acoustic model
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Figure 2: Acoustic model structure in different stages: 1© TTS
model training - grey and green parts, 2© Code predictor train-
ing - green, blue and red parts, 3© Inference - grey and blue
pars. Dashed green lines denote sampling via reparameteriza-
tion [24] in TTS model training.

Following our previous work [25], we built a TTS model
based on a variant of FastSpeech, as shown in Figure 2. Its
core part was an encoder-decoder DNN that converts a se-
quence of phonemes to a sequence of mel spectral frames, us-
ing a length regulator to match their lengths by repeating en-
coder outputs. We followed [15] to predict phoneme durations
in log domain, trained supervised using prepared phone dura-
tion labels. We augmented the basic FastSpeech model by in-
troducing phoneme-level latent variables that conceptually cap-
tured unaccounted-for local prosodic variations. The latent code
joined the main FastSpeech network at encoder output to con-
dition the decoder. We learned the latent code with the vari-
ational autoencoder (VAE) framework. A reference encoder
computed a variational posterior of the latents from phoneme-
aligned spectrogram, from which a latent code was drawn and
appended to the phoneme encoding before sending to the length
regulator. The objective function was formulated as an evidence

3https://github.com/dccuchile/beto
4https://github.com/google-research/bert



lower bound (ELBO) of expected reconstruction loss:

L = LELBO (1)

LELBO is actually a β-VAE objective [26] under standard
Gaussian latent prior:

Eq(z|x)[log p(x|y, z)]

− λKL

∑U

u=1
DKL(q(zu|x))‖N (0, I))

(2)

where z represents the sequence of latents and zu is the latent
code for the u-th phoneme. U is the number of phones. We
used 0<λKL<1, which favors accuracy over latent space ex-
ploration.

After this enhanced FastSpeech model was trained, we col-
lected mean latent codes for every phoneme in corpus using the
reference encoder, and trained a separate code predictor to pre-
dict them from text under the mean square error (MSE) loss.
This model were later used to provide the latent code during
synthesis.

Details of the FastSpeech network were same as [15]. The
reference encoder closely followed that in [27] and extracted
a 3-dim latent code for each phoneme. We set λKL to 0.01.
Training the TTS engine took about 300k steps at batch size 16
on one NVIDIA P40 GPU.

2.2.3. Vocoder

We used HiFi-GAN for reconstructing speech waveform from
mel-spectrogram. The model was trained using official imple-
mentation5 with modifications to match our 24 kHz sample rate,
as listed in Table 2. We further fine-tuned the vocoder using
mel-spectrogram predicted from the acoustic model as input, to
make up for the mismatch between ground truth and predicted
mel-spectrograms.

Table 2: Configurations modified when training 24 kHz HiFi-
GAN vocoder

Configuration

upsample rates [6,5,5,2]
upsample kernel size [12,10,10,4]
segment size 9600
hop size 300
win size 1200
fmax 12000

2.3. Synthesis

In the synthesis stage we chained up old and new modules into
an automated pipeline for text-to-speech generation. In sum-
mary, the text analyzer converted text to phoneme sequence
and break markers; the acoustic model converted break-marked
phoneme sequence to mel-spectrogram; the vocoder converted
mel-spectrogram to speech audio. The acoustic model and
vocoder were shared by SH1 and SS1 tasks. The text analyzer
was task-dependent, due to different input domains, as shown
in table 3.

5https://github.com/jik876/hifi-gan

Table 3: Task-dependent text analyzer

Submodules Task SH1 Task SS1

Break prediction BERT-ES BERT-ML
Spanish word G2P CART-based CART-based
Language identify - open source model

English word G2P - g2p-en &
phoneme mapping

2.3.1. Text analysis

Text analysis included G2P conversion and break prediction.
Both modules received raw text as input. For task SH1 we used
the same CART-based G2P as in section 2.1.2 and BERT-ES
for break prediction. For task SS1 we used BERT-ML for break
prediction, but we had no dedicated module for mixed-lingual
G2P. Our strategy was to map English phonemes to Spanish
counterparts, as explained below.

Table 4: English (EN) phonemes to Spanish (ES) phonemes
mapping. * is a vowel phoneme determined by Spanish letters

EN ES EN ES EN ES

AA0/2 a ER0/2 * r OW1 o1 w
AA1 a1 ER1 *1 r OY0/2 o j
AE0/2 a EY0/2 e j OY1 o1 j
AE1 a1 EY1 e1 j P p
AH0/2 *1 F f R r/rr
AH1 * G G/g S s/T
AO0/2 o HH x SH s/tS
AO1 o1 IH0/2 i T t
AW0/2 a w IH1 i1 TH T
AW1 a1 w IY0/2 i UH0/2 u
AY0/2 a j IY1 i1 UH1 u1
AY1 a1 j JH x UW0/2 u/w
B B/b K k UW1 u1
CH tS L L/l V B/b
D D/d M m W w
DH D N n Y j/jj
EH0/2 e NG n Z s/T
EH1 e1 OW0/2 o w ZH s/x

Given an input text we first identified the English words
from Spanish words using an open source language identifica-
tion model [28, 29] 6. This model predicts a probability distri-
bution over languages for each word. If the predicted proba-
bility of the word being English was higher than Spanish, and
the value was above a threshold, we identified it as a English
word, otherwise it was Spanish. G2P for Spanish words was
same as in task SH1. For English words, we used a python
package ‘g2p-en’ 7 to get English G2P results, then mapped the
English phonemes to Spanish counterparts according to table 4.
Mapping rules in this table were composed by informally com-
paring the phone sets and listening to example SS1 sentences
provided by the Challenge. Most phonemes made a one-to-one
mapping, but some English phonemes might map to multiple or
no Spanish counterparts. In this case the English letters corre-
sponding to the phoneme in question were regarded as Spanish

6https://fasttext.cc/docs/en/language-identification.html
7https://pypi.org/project/g2p-en/



letters, and one-to-one mapped to Spanish phonemes according
to basic pronunciation rules.

3. Evaluation results
12 teams submitted results for task SH1 and 10 teams submitted
results for task SS1. Our system was identified as K. Submitted
speech examples from the participants and natural speech (iden-
tified as R) were evaluated by three groups of listeners, includ-
ing paid participants (denoted as SP) who are native Spanish
speakers, self-identified speech experts, and volunteers.

The evaluation comprises 6 sections and includes 3 metrics,
detailed in Table 5.

Table 5: Evaluation sections and metrics for each task

Section Task SH1 Task SS1

section1 Similarity Similarity
section2 Similarity Naturalness
section3 Naturalness Naturalness
section4 Naturalness Acceptability
section5 Intelligibility Acceptability
section6 Intelligibility Acceptability

3.1. Naturalness and similarity

Naturalness and similarity were evaluated for both tasks.
When evaluating naturalness, listeners were asked to choose a
score which represented how natural or unnatural the sentence
sounded on a scale of 1 [Completely Unnatural] to 5 [Com-
pletely Natural]. For similarity, a score that represented how
similar the synthetic voice sounded to the voice in the reference
samples on a scale from 1 [Sounds like a totally different per-
son] to 5 [Sounds like exactly the same person] was chose. Fig-
ure 3 and Figure 4 show the scatter plot matching naturalness
and similarity scores for task SH1 and task SS1, respectively.

In task SH1, our system achieved MOS of 3.67 and similar-
ity score of 3.71. System F was obvious better than ours and on
par with natural speech. Comparing our system to system J, G,
and I, there was no significant difference. In task SS1, the MOS
of our system was 3.68 and the similarity score was 4.16, which
was higher than that of task SH1 though we used one system in
both tasks.

The results validated the effectiveness of our method since
we didn’t understand Spanish and couldn’t make any optimiza-
tion in terms of language related issues during system develop-
ment. We notice the MOS of SP listeners was 0.5 lower than
that of other listeners, which may indicate the importance of
language knowledge when building TTS system.

3.2. Intelligibility

Intelligibility was only evaluated for task SH1. Listeners were
asked to listen to each sentence only once and type in what
they heard. The word error rate (WER) of our system for Shar-
vard test was 4.5%, which was on par with natural speech, and
for semantically-unpredictable sentences (SUS) test was 14%.
Though the WER of our system was not the lowest, there was
no significant difference compared our system to systems with
lower WER.

Figure 3: Scatter plot matching naturalness and similarity
scores for task SH1. K is our system.

Figure 4: Scatter plot matching naturalness and similarity
scores for task SS1. K is our system.



3.3. Acceptability

Acceptability was only evaluated for task SS1. Listeners were
asked to choose a score that represented how acceptable or un-
acceptable of the English words in the sentence sounded on a
scale from 1 [Not Intelligible] to 5 [Perfect].

The acceptability score of our system was 3.41, which sug-
gests that our strategy mapping English phonemes to Spanish
phonemes was acceptable. However, there was still a big gap
between our system and natural speech. We may attribute it to
the lack of language knowledge. We inferred the phoneme map-
ping rules only from 10 reference speech samples, which may
result in wrong pronunciations.

4. Conclusions
In this paper, we present our TTS system developed for Blizzard
Challenge 2021. The system was built following text analysis -
acoustic model - vocoder pipeline. The text analyzer converted
input text to a sequence of Spanish phonemes with prosodic
boundary markers. English phonemes were mapped to their
Spanish counterparts in spoke task. The acoustic model was
built based on FastSpeech with fine-grained prosody modelling
to capture local prosodic variations, followed by a HiFi-GAN
vocoder. The same system was used for both tasks. Evalu-
ation results showed that our system worked well by most of
the criteria, but there was still much room for improvement in
naturalness and English words acceptability, in which language
knowledge may play an important role.
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