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Abstract
This paper describes our effort to build the SUTD-NUS

system for Blizzard Challenge 2021. The challenge has two
tasks: 1) Hub task 2021-SH1: to build a Spanish text-to-speech
(TTS) system using about 5 hours data from a European Span-
ish female speaker, and 2) Spoke task 2021-SS1: to build a TTS
system that is able to synthesize the Spanish text containing a
small amount of English words, using the same training data
as Hub task 2021-SH1. Our submitted system is an end-to-end
TTS structure that can generate acoustic features from text in-
put. MelGAN neural vocoder are utilized to generate speech
waveforms from acoustic features for both SH1 and SS1 tasks.
Evaluation results provided by the challenge organizers demon-
strate the effectiveness of our submitted TTS system.
Index Terms: speech synthesis, text-to-speech, Blizzard Chal-
lenge

1. Introduction
The Blizzard Challenge, held annually since 2005 [1], aims to
promote research techniques in speech synthesis and provides a
common platform with the necessary data. The challenge con-
sists of two tasks this year: 1) Hub task 2021-SH1: to generate
Spanish speech from the texts that only contains Spanish words;
2) Spoke task 2021-SS1: to generate the speech from Spanish
texts that also contains a small amount of English words in each
sentence.

Text-to-speech (TTS) aims to synthesize the voice from the
text, and can be broadly divided into two types: concatenative
speech synthesis [2, 3] and statistical parametric speech syn-
thesis [4, 5, 6]. In concatenative speech synthesis, the synthe-
sized speech is constructed by speech segments selected from
a database. Even though concatenative approaches can produce
high-quality speech, boundary artifacts still remain to be a key
issue. Statistical parametric approaches parameterize speech
signals into acoustic features, and map text features to acoustic
features with an acoustic model. Thus, acoustic model training
has been the focus for statistical parametric speech synthesis.
With the advent of deep learning, neural network (NN)-based
TTS, such as deep neural network (DNN) based [5, 7] and re-
current neural network (RNN) based methods [8, 9], have ad-
vanced the state-of-the-art in acoustic modelling. NN-based
methods also greatly improve the performance of vocoders,
such as WaveNet [10] and WaveRNN [11]. Thanks to its high
flexibility and low data cost, parametric speech synthesis has
gained widespread interests in previous TTS research.

Recent sequence-to-sequence (seq2seq) methods in TTS in-
clude Tacotron [12], Deep Voice 3 [13] and FastSpeech [14].
These methods learn to associate the text sequence and the
acoustic features in an end-to-end manner. Compared to con-
ventional TTS systems, seq2seq-based speech synthesis frame-
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Figure 1: TTS synthesizer system architecture

works can synthesize highly intelligible and natural speech, and
are less dependent on human label preprocessing and feature
engineering.

We build our system based on Tacotron2 [15], which is an
end-to-end TTS system with a neural vocoder. Considering that
both Spanish and English share the same alphabet, we utilize
the characters to represent the linguistic information as the in-
put to the encoder. We also concatenate the character embed-
ding with the tone embedding to improve the expressiveness of
the synthesized speech. MelGAN [16] is adopted as the neural
vocoder to reconstruct the waveform from the acoustic features.

This paper is organized as follows: in Section 2, we de-
scribe our system implementation for these two tasks; in Sec-
tion 3, we report the experimental results; Section 4 concludes
this paper.

2. System Architecture
2.1. End-to-end TTS synthesizer

Our system architecture is illustrated in Figure 1. The model is
a modified Tacotron2 [15], an end-to-end TTS system that has
a seq2seq encoder-decoder architecture with attention mecha-
nism. It comprises (1) an encoder that converts input characters
to a fixed-dimension text embedding, (2) an attention-based de-
coder that reconstructs acoustic features from the text embed-
ding, and (3) a neural vocoder that generates human-like speech
from the acoustic features.

The encoder aims to generate linguistic representa-
tions from the input text sequence. For the SH1 task, the input



texts only contain Spanish words, but for the SS1 task there will
be some English words in the input sentences. Since the Span-
ish alphabet is a superset of the English alphabet, we directly
use the characters as the input for both tasks. In addition, Span-
ish uses ”¿” and ”¡” to mark questions and exclamations at the
beginning of an utterance, for example:

• ¿Cuál es la peor pelı́cula que has visto?

• ¡Cubrimos los regalos de todos!

To make our synthesis model more expressive, we regard
”¿” and ”¡” as tone information in the input representation of
our TTS system. The tone IDs are first converted to an 8-
dimensional tone embedding through a look-up table, then con-
catenated with the corresponding character embedding. The
concatenated input vectors are passed to a 2 layer pre-net, fol-
lowed by the CBHG [12] text encoder to generate the latent text
embedding.

The encoder output is attended by the attention-based de-
coder, which is a RNN-based network that predicts acoustic
frames from encoder output. The attention mechanism com-
putes a fixed-length context vector to provide additional input
to the decoder network. Location-sensitive attention is able to
reduce the frame prediction errors [17]. The decoder input is
passed through 2 layer pre-net and 2 LSTM layers, followed
by a linear projection layer to predict acoustic features. The
residual structure of a 5 layer convolutional postnet improves
the general reconstruction. The stop token symbol is to predict
when the model should stop during inference.

For both SH1 and SS1 tasks, we use the same input repre-
sentation and model architecture. The output acoustic features
are mel-spectral features extracted from 48kHz raw audios, with
12.5ms frame shift and 25ms frame length.

2.2. Neural Vocoder

For rapid inference and high quality waveform generation, we
use MelGAN as the neural vocoder to synthesize audio from
mel spectra [16]. MelGAN is a generative adversarial net-
work (GAN) based waveform generation model [18] with non-
autoregressive feed-forward convolutional architecture. It con-
sists of a fully convolutional feed-forward network as the gen-
erator and a multi-scale discriminator. The model is trained by
jointly optimizing multi-resolution short-time Fourier transform
(STFT) loss and adversarial loss that enables the model to cap-
ture the time-frequency distribution of the realistic waveform
effectively.

The waveform generator is a fully convolutional feed-
forward network that transforms mel-spectral features to the
output waveform. We followed the model architecture that de-
scribed in [16]. To make the time resolution of the Mel-spectral
features and the waveform consistent, the strides of the trans-
posed convolutional upsampling layers are [6, 5, 5, 4] respec-
tively.

For the discriminator, it has multiple discriminators oper-
ating on different audio scales. This is because the audio sig-
nal has different levels of characteristics. Each discriminator
then learns the corresponding feature from different frequency
ranges. The architecture of the discriminator is illustrated in
Table 1.

Multi-resolution STFT loss is introduced to im-
prove the stability and efficiency of the adversarial traning pro-
cedure. The loss is computed by the sum of three different
STFT losses with different FFT size, frame shift and window

Table 1: Discriminator architecture

15× 1, stride=1, conv 16, LeakyReLU
41× 1, stride=4, group=4, conv 64, LeakyReLU
51× 1, stride=5, group=16, conv 320, LeakyReLU
51× 1, stride=5, group=80, conv 1600, LeakyReLU
61× 1, stride=6, group=400, conv 1600, LeakyReLU

5× 1, stride=1, conv 1600, LeakyReLU
3× 1, stride=1, conv 1

Table 2: Parameters for STFT losses

FFT size Frame shift Window size
1024 120 600
2048 240 1200
512 50 240

size. The three sets of STFT parameters are illustrated in Table
2.

3. Results
3.1. Challenge Participants

In total, 12 teams (A/B/C/D/E/F/G/I/J/K/L/N) submitted their
results for the SH1 task and 11 teams (A/C/D/E/H/I/K/L/M/N)
participated in the SS1 task. For both tasks, system R is natural
speech. Our system is labelled as A.

3.2. Evaluation metrics

Subjective listening tests were designed to perceptually evaluate
the synthetic samples for all systems in both SH1 and SS1 tasks.
For the SH1 task, three sets of experiments were conducted to
evaluate the synthetic samples, including naturalness, similarity
to original speaker, and intelligibility. For the SS1 task, natural-
ness, similarity to original speaker and acceptability of English
words were reported to evaluate the performance. The detailed
results will be presented in the next sections.

3.3. Perceptual evaluation for SH1 task

3.3.1. Naturalness

These sets of experiments were conducted to evaluate the nat-
uralness of the synthetic sentences. The listeners were asked
to assign a score to represent how natural or unnatural of the
speech sample, where a score 1 indicates the speech sample
is ”Completely Unnatural”, while a score 5 indicates that the
speech sample is ”Completely Natural”.

Figure 2 shows the boxplot of mean opinion scores (MOS)
of the naturalness for synthetic sentences. Our system obtains
an average MOS of 2.17 ± 1.08 standard deviation. For refer-
ence, thenatural speech has a score of 4.21 ± 0.93.

3.3.2. Similarity to original speaker

These sets of experiments were conducted to evaluate the simi-
larity between the synthetic sentences and the original speaker.
The listeners were asked to assign a score to represent how simi-
lar the synthetic voice sounded to the voice in the reference sam-
ples, where a score of 1 indicates the speech sample ”Sounds
like a totally different person”, while a score of 5 is ”Sounds
like exactly the same person”.
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Figure 2: Boxplot of naturalness scores of sentence synthesis
for all listeners for SH1 task. A is our system.
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Figure 3: Boxplot of similarity scores of sentence synthesis for
all listeners for SH1 task. A is our system.

Figure 3 shows the boxplot of similarity scores of the syn-
thetic sentences. Our sytem obtains an average MOS of 2.81
with 1.28 standard deviations.

3.3.3. Intelligibility

The intelligibility evaluation of the SH1 task is performed by
dictation, where listeners were asked to write down the con-
tents they heard from the given samples. The performance is
evaluated by calculating the word error rate.

Figure 4 shows the word error rate for the INT-Sharvard
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Figure 4: Boxplot of SHARVARD intelligibility scores of sen-
tence synthesis for all listeners for SH1 task. A is our system.
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Figure 5: Boxplot of SUS intelligibility scores of sentence syn-
thesis for all listeners for SH1 task. A is our system.

section. In this section, our system obtains a 6.1% word error
rate with 0.19 standard deviations. As a reference, the natural
speech has a 4.6% word error rate with 0.14 standard deviations.
Figure 5 shows the word error rate for the INT-SUS section. In
this section, our system obtains a 14% word error rate and 0.21
standard deviations.
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Figure 6: Boxplot of naturalness scores of sentence synthesis
for all listeners for SS1 task. A is our system.

176 176 176 176 176 176 176 176 176 176 176n

R K I E C H M D N A L

1
2

3
4

5

Similarity scores comparing to original speaker − All listeners

System

S
co

re

Figure 7: Boxplot of similarity scores of sentence synthesis for
all listeners for SS1 task. A is our system.

3.4. Perceptual evaluation for SS1 task

3.4.1. Naturalness

These sets of experiments were conducted to evaluate the nat-
uralness of the synthetic sentences. The listeners were asked
to assign a score to represent how natural or unnatural of the
speech sample, where a score 1 indicates the speech sample
is ”Completely Unnatural”, while a score 5 indicates that the
speech sample is ”Completely Natural”.

Figure 6 shows the boxplot of mean opinion scores (MOS)
of the naturalness for synthetic sentences. Our system obtains
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Figure 8: Boxplot of acceptability scores of sentence synthesis
for all listeners for SS1 task. A is our system.

an average MOS of 2.28 with 1.08 standard deviation. While,
as a reference, the natural speech has a score of 4.29 with 0.88
standard deviations.

3.4.2. Similarity to original speaker

These sets of experiments were conducted to evaluate the simi-
larity between the synthetic sentences and the original speaker.
The listeners were asked to assign a score to represent how sim-
ilar the synthetic voice sounded to the voice in the reference
samples, where a score 1 indicates the speech sample is ”Sounds
like a totally different person”, while a score 5 indicates that the
speech sample is ”Sounds like exactly the same person”.

Figure 7 shows the boxplot of similarity scores of the syn-
thetic sentences. Our system obtains an average MOS of 2.76
with 1.25 standard deviations.

3.4.3. Acceptability of English words

These sets of experiments were conducted to evaluate how ac-
ceptable or unacceptable the English words were in the syn-
thetic sentences. The listeners were asked to assign a score to
represent the acceptability of the English words, where a score 1
indicates the English words are ”Not Intelligible”, while a score
5 indicates the English words are ”Perfect”.

Figure 8 shows the boxplot of the acceptability scores of
the synthetic sentences. Our system obtains an average MOS of
2.20 ± 1.08.

4. Conclusions
This paper presents the SUTD-NUS system submitted for Bliz-
zard Challenge 2021. We built a TTS framework that first trans-
forms text input to acoustic features using an end-to-end TTS
synthesizer, followed by a MelGAN neural vocoder to construct
the audio waveform. The effectiveness of our system is success-
fully confirmed by the official evaluation results.
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