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Abstract
This paper presents Nana-HDR, a new non-attentive non-
autoregressive model with hybrid Transformer-based Dense-
fuse encoder and RNN-based decoder for TTS. It mainly con-
sists of three parts: Firstly, a novel Dense-fuse encoder with
dense connections between basic Transformer blocks for coarse
feature fusion and a multi-head attention layer for fine feature
fusion. Secondly, a single-layer non-autoregressive RNN-based
decoder. Thirdly, a duration predictor instead of an attention
model that connects the above hybrid encoder and decoder. Ex-
periments indicate that Nana-HDR gives full play to the advan-
tages of each component, such as strong text encoding ability
of Transformer-based encoder, stateful decoding without being
bothered by exposure bias and local information preference, and
stable alignment provided by duration predictor. Due to these
advantages, Nana-HDR achieves competitive performance in
naturalness and robustness on two Mandarin corpora and shows
potential on a small Spanish corpus of Blizzard Challenge 2021.
Index Terms: Speech synthesis, sequence-to-sequence model,
Transformer, Recurrent Neural Network

1. Introduction
With advances in deep learning, the text-to-speech acoustic
model that converts text into acoustic features gradually tran-
sits from Hidden Markov Models (HMMs) to Deep Neural Net-
work (DNN) based ones. Sequence-to-sequence neural network
with attention mechanism [1] is one of the most popular meth-
ods. The traditional synthesis process is simplified by merging
the generation of linguistic feature and acoustic feature into a
single network. Works such as Char2Wav [2], Deep Voice 3 [3]
and Tacotron [4], make significant progress in generating highly
natural speech close to human quality.

As an attention-based autoregressive model, Tacotron is
able to generate human-like speech for in-domain text. How-
ever, it cannot handle out-domain situations robustly. For in-
stance, the length of testing text is quite different from that of
training text and the field of testing text is not included in the
training set. The causes of the robustness issue can be roughly
classified as follows: Firstly, there are no explicit restrictions on
the soft attention mechanisms such as content-based attention
[5] and location sensitive attention [6] to prevent skip, repetition
and mispronunciation. Secondly, the model predicts a stop flag
to judge whether the synthesis process is completed. Therefore,
a wrong prediction can lead to serious failures, such as early
cut-off and late stop. Finally, teacher forcing training induces
a mismatch between training and inference, usually known as
exposure bias [7]. And the local information preference on au-
toregressive decoder may weaken the dependence between pre-
dicted acoustic features and text conditions, which makes the
model tend to produce bad cases [8]. Local information prefer-
ence still exists due to autoregressive property, although teacher
forcing is not applied [9].

Many efforts are made to solve the above problems. Meth-
ods in [10, 11, 12] improve the attention mechanism by intro-
ducing location information and monotonic constraints. These
approaches are proved to be effective in improving the speed of
convergence, the stability of feature generation and the robust-
ness of long sentence synthesis. However, the improved atten-
tion mechanisms can not fundamentally solve the problem of
attention failure. Fastspeech [13] relies on the duration predic-
tor instead of attention model, which eliminates the robustness
problems caused by attention failure and stop frame mispredic-
tion. As a feed-forward non-autoregressive model, Fastspeech
can instantly convert text into acoustic features. However, there
is still a gap between its synthetic quality and that of autore-
gressive models. For exposure bias and local information pref-
erence issues, the effect of exposure bias on the autoregressive
decoder is reduced by adversarial training [14]. Inspired by In-
foGAN [15], a recognizer is introduced to maximize the mutual
information between predicted feature and text condition which
reduces the impact of local information preference [8].

Tacotron and Fastspeech mentioned above have single type
of encoder and decoder. Experiments demonstrate that, com-
pared to the architecture with a single type of encoder and
decoder, the hybrid architecture with Transformer-based en-
coder and RNN-based decoder achieves the best results on the
English-to-French machine translation task [16]. The results
confirm their intuition that Transformer-based encoder is good
at text feature extraction and the stateful RNN-based decoder is
beneficial for conditional generation.

Recently, the work in the field of natural language process-
ing [17] further explores what BERT learn about the structure
of language. The results indicate that intermediate layers of
BERT encode a rich hierarchy of linguistic information, with
surface features at the bottom, syntactic features in the mid-
dle and semantic features at the top. This conclusion is similar
to the one obtained by visual analysis of Convolutional Neu-
ral Network (CNN), which shows that the features learned by
CNN are also hierarchical [18]. The bottom layers learn the
surface features like edges, corners and colors. Higher layers
learn more semantic information such as faces. In the field of
computer vision, the performance of various tasks can be im-
proved by fusing features with different representation mean-
ings. ResNet [19] and DenseNet [20] merge the features of
different layers through bypass connections, which improves
the performance of image classification while alleviating gra-
dient vanishing. FCN [21], U-Net [22] and SegNet [23] fuse
the features of different encoder layers in different ways, and
then provide the fusion feature to the decoder, which effectively
improve the accuracy of semantic segmentation. Because the
features extracted by Transformer encoder and CNN have sim-
ilar hierarchical characteristics, the feature fusion method for
CNN may be transferred to Transformer encoder for the pur-
pose of improving the performance of the TTS acoustic model.

As shown in Figure 1, a non-attentive non-autoregressive



Figure 1: Architecture of the proposed Nana-HDR.

model with hybrid Transformer-based Dense-fuse encoder and
RNN-based decoder (Nana-HDR) for TTS is proposed.

Figure 2: Architecture of the proposed Dense-fuse encoder.

2. Proposed Method
2.1. Dense-fuse encoder

The proposed Dense-fuse encoder is presented in Figure 2(a).
Chinese Pinyin sequence with tone and prosody information
or Spanish phoneme sequence is converted to the correspond-
ing embedding sequence. Then, a convolutional processor with
multiple Conv-1D layers are applied to preprocess the embed-
ding sequence. For two reasons, sinusoidal positional embed-
ding is not used. Firstly, the maximum length of the input
sequence needs to be preset for calculating of the sinusoidal
encoding table, which makes the model unable to handle arbi-
trarily long sentences. Secondly, using convolutional layers as
input processor is able to capture implicit relative position in-
formation which has been proved to improve the performance
of automatic speech recognition [24]. Next, the output of the
processor with convolutional context is fed to the text feature
extractor stacked by basic Transformer blocks. As shown in
Figure 2(b), each Transformer block is composed of multi-head
attention and convolution sub-modules. All sub-modules fol-
low a strict computation flow: process, dropout, residual-add
and layer normalize. Transformer blocks are densely connected
through bypass connections. From the perspective of back prop-
agation, the supervision signal from the top layer can be better
transmitted back to the lower layer, which plays a similar role of
deep supervision and makes the model easier to train. From the
perspective of feature fusion, dense connections make the fea-

tures of lower layer can be reused by higher layer. Since the fea-
tures extracted by different layers of Transformer encoder have
different representation meanings [17], intuitively such feature
reuse can enhance the representation ability of the final encod-
ing as it has been proven in DenseNet. Different from DenseNet
which uses channel-wise concatenation, element-wise addition
is applied for feature fusion which helps to maintain the com-
putational complexity by keeping encoding dimension between
blocks unchanged. In this way, features of different layers are
treated indiscriminately which can be regarded as a coarse fu-
sion. It is relatively rough to fuse features learned by trans-
former blocks through dense bypass-connections, because the
model cannot control the proportion of these features.

In [25], attention mechanism is applied to output a set of
combination weights over the style tokens. Inspired by this
method, multi-head attention is introduced for fine fusion. As
shown in Figure 2(a), the coarse fusion feature is used as the
query (Q), and the output of each Transformer block is used as
the key (K) and value (V) of an attention head. The final hidden
text representation is obtained by combining outputs of different
blocks with the weights learned by multi-head attention layer.
Fine fusion can be regarded as a further adjustment of the coarse
fusion feature by the model. The model can decide how much
additional information the coarse fusion feature needs to obtain
from each Transformer block by fine fusion.

Figure 3: Architecture of the duration extractor and predictor.

2.2. Duration extractor and predictor

Before training Nana-HDR, an attention-based duration ex-
tractor is trained to align the training text and training audio,
and then output the duration of the training text tokens (tar-
get duration). Duration of individual text token can be ob-
tained by ASR force alignment. However, training an attention-
based model and extracting target duration through ground truth
aligned (GTA) mode is a relatively efficient and accurate way.
The duration extractor (Figure 3(a)) is a sequence-to-sequence
model composed of the above-mentioned Dense-fuse encoder,
GMM-based attention model, a two-layers LSTM decoder and



a CBHG postnet. As shown in Figure 1, the extracted target
duration is used to upsample the encoder outputs to match the
length of target acoustic features during training. It is also used
as label for the learning of the duration predictor.

The duration predictor is trained jointly as a part of Nana-
HDR. The duration predictor (Figure 3(b)) processes the hidden
text representation (output of Nana-HDR’s Dense-fuse encoder)
through a 1D-convolutional network to capture local position-
related information. Considering that the duration is related
to the global context information, a bidirectional RNN layer
is added to the convolution network, and its output is linearly
mapped to a scalar. During training, the gradient of duration
predictor is prevented from back-propagating to the Dense-fuse
encoder for the purpose of avoiding affecting its learning. Dur-
ing inference, duration predictor combined with length regula-
tor are used to solve the problem of length mismatch between
hidden text representation and acoustic feature to be generated.

2.3. Non-autoregressive single-layer RNN decoder

Decoder which keeps tracking the state information is beneficial
for conditional generation [16]. As a stateful decoder, autore-
gressive RNN-based decoder is widely used in text-to-feature
model. However, it suffers from exposure bias, local informa-
tion preference and slow inference.

Scheduled sampling deals with the exposure bias by adjust-
ing the drop teacher forcing frame rate empirically. For local in-
formation preference, it is mainly caused by the powerful RNN
decoder with autoregressive dependency. Let z and x be con-
ditional variable obtained from text and corresponding acoustic
features to be decoded, the autoregressive conditional decod-
ing process can be described as p(x|z) =

∏N
i p(xi|z, x<i),

where N is the number of acoustic frames in x. Since RNNs are
universal function approximators and any joint distribution over
x admits an autoregressive factorization, the RNN autoregres-
sive decoding distribution can in theory represent any proba-
bility distribution. The information that can be modeled locally
by decoding distribution p(x|z) will be encoded locally without
using information from z and only the remainder will be mod-
eled using them [9]. Experiments in [26] show that weakening
the autoregressive part of the model by dropout can encourage
the conditional variables to be used. Using larger reduction fac-
tor (e.g. r=5) in Tacotron works in a similar way, which can alle-
viate local information preference to a certain extent. However,
this method will introduce a problem: how to select the context
conditional frame when using the duration-based model.

[8] further formalizes conditional autoregressive attention-
based model Tacotron as a variational encoder-decoder. The
goal of training is to maximize the sum of conditional like-
lihood of text t and acoustic features x pairs in the training
set. For each pair, the conditional likelihood can be written
as log pθ(x|t) =

∑N
i=1 log pθ(xi|x<i, t). The distribution

of the time-aligned latent variables (context vectors generated
by attention model) c can be factorized as log pθ(c|x, t) =∑N
i=1 log pθ(ci|x<i, t) [27]. Then the conditional likeli-

hood of each training pair can be written as log pθ(x|t) =

log
∫
c
pθ(x, c|t)dc =

∑N
i=1 log

∫
ci
pθ(xi, ci|x<i, t). However,

the integral over c is intractable to compute. Therefore, an en-
coder approximation is introduced. For a training time step i,
encoder distribution qφ(ci|x<i, t) is used to approximate the
posterior distribution pθ(ci|x≤i, t), where φ and θ is the pa-
rameters of the encoder (with attention model) and the autore-
gressive decoder. The KL-divergence of the encoder approxi-
mation from the posterior distribution can be written as Eq.1.

In Eq.2, since the KL-divergence term is always non-negative,
the conditional likelihood log pθ(xi|x<i, t) equals the varia-
tional lower bound L(θ, φ, x, t) only when the KL-divergence
DKL(qφ(ci|x<i, t) ‖ pθ(ci|x≤i, t)) equals 0. This means that
ci and xi are conditionally independent. As summarized in [8],
when x<i contains enough information to predict xi, the model
tends to reduce the dependence between ci and xi to maximize
log pθ(xi|x<i, t). At the same time, it also reduces the de-
pendence between text and acoustic features. Modeling depen-
dency between the text and the predicted acoustic features in-
sufficiently may lead to higher bad-case rate. For the duration-
based model, the dependence between time-aligned latent vari-
ables (generated by duration predictor with length regulator)
and acoustic features is further reduced because there is no at-
tention model to explicitly connect ci and x<i. Introducing an
auxiliary CTC recognizer to maximize the mutual information
between the text and acoustic features is an optional way [8].
To alleviate these problems fundamentally, a non-autoregressive
single-layer RNN is used as a decoder in this work. Due to
the absence of autoregressive feedback, only hidden text rep-
resentations are fed to the decoder which avoids the influence
of local information preference, but also also puts forward a
higher requirement for their representation ability. We believe
that Dense-fuse encoder with strong text encoding ability can
meet the requirement. In order to allow the text information to
fully participate in the decoding process, the output of decoder
and the expanded text representation are concatenated for final
acoustic feature generation.

DKL(qφ(ci|x<i, t) ‖ pθ(ci|x≤i, t))
= Eqφ(ci|x<i,t)[log qφ(ci|x<i, t)− log pθ(ci|x≤i, t)]
= Eqφ(ci|x<i,t)[log qφ(ci|x<i, t)− log pθ(xi, ci|x<i, t)
+ log pθ(xi|x<i, t)]

= Eqφ(ci|x<i,t)[log qφ(ci|x<i, t)− log pθ(xi, ci|x<i, t)]
+ log pθ(xi|x<i, t)

(1)
log pθ(xi|x<i, t)

= DKL(qφ(ci|x<i, t) ‖ pθ(ci|x≤i, t))
+ Eqφ(ci|x<i,t)[log pθ(xi, ci|x<i, t)− log qφ(ci|x<i, t)]
≥ Eqφ(ci|x<i,t)[log pθ(xi, ci|x<i, t)− log qφ(ci|x<i, t)]
= L(θ, φ, x, t)

(2)

3. Experiments
3.1. Datasets

Experiments were conducted on two Mandarin corpora and a
small Spanish corpus. The first one was recorded by a pro-
fessional Chinese female speaker in studio quality. The tran-
scription used in the recording covered multiple fields, with an
average sentence length of 70 characters. The number of utter-
ances used for training was 9600. The second one consisted of
12000 audio files extracted from an online audio-book which
recorded by an actor with rich rhythm. The transcription was
the corresponding novel, with an average sentence length of 86
characters. The last one was a 5 hours European Spanish corpus
provided by the Blizzard Challenge 2021 organizing committee
(without using external data). Text transcription was converted
to phoneme-based one by professionals (manually labelled) to
deal with the problem of synthesizing Spanish text with a small
number of English words. This phoneme-based transcription
will be made public. All recordings were sampled at 16kHz



with 16-bit quantization. Consistent with LPCNet [28], 18 Bark
cepstral coefficients and 2 pitch parameters were extracted as
the prediction targets of Nana-HDR. 100 utterances that have
not appeared in the training set were used for the in-domain nat-
uralness testing. In order to verify whether the model can cope
with out-domain scenarios, 200 popular words with an average
length of 5 characters and 50 long paragraphs with an average
length of 1000 characters were used for robustness testing. The
latter was selected from WeChat official account, covering the
fields of politics, sports and so on. For Blizzard Challenge 2021,
test text was provided by the organizing committee.
3.2. Model configuration

Nana-HDR was a sequence-to-sequence acoustic model with a
Dense-fuse encoder, a duration predictor (with a length regu-
lator) and a single-layer RNN-based decoder. The main com-
ponents of the Dense-fuse encoder were: (1) A convolutional
processor with three 256-dimensional Conv-1D layers whose
kernel sizes were set to 3. (2) A text feature extractor with four
Transformer blocks whose attention head numbers and hidden
sizes were set to 4 and 256 respectively. (3) A 256-dimensional
4-head attention layer for fine feature fusion. Duration pre-
dictor was mainly composed of three 256-dimensional Conv-
1D layers with kernel size of 3 and a 64-dimensional bidi-
rectional GRU layer. The decoder was a non-autoregressive
512-dimensional unidirectional GRU layer. The postnet was a
CBHG module with the same structure as the one in Tacotron.
Nana-HDR was trained using the Adam optimiser [29]. L1 loss
was used for acoustic feature (before and after postnet) and du-
ration loss. The model was trained for 300,000 steps, with a
learning rate of 0.0001 and a batch size of 32. LPCNet as a
relatively lightweight neural vocoder is applied in this work.
Different from [28], in addition to being input to the first GRU
layer, conditional feature was also fed to the second GRU layer.

3.3. Results

To evaluate the naturalness of the proposed model, we con-
ducted Mean Opinion Score (MOS) and Comparison Mean
Opinion Score (CMOS) tests on two Mandarin corpora. For
MOS tests, native Chinese speakers were invited to listen and
score 125 audio. 100 test utterances synthesized by the corre-
sponding model were mixed with 25 original recordings. Scores
ranged from 1 to 5 with intervals of 0.5. For CMOS tests, the
same listeners were asked to listen to the paired test utterances
synthesized by two different models in random order and evalu-
ate how the latter feels comparing to the former using a score in
[-3, 3] with intervals of 1 (from much worse to much better). All
listening tests were conducted in a quiet room with headphones.
We evaluated the robustness by measuring the failure rate and
the word error rate (WER). The failure was mainly identified by
whether the synthesized audio ended early, repeated the same
clip or contained meaningless clip which seriously affected the
understanding of the content. The WER was measured by an
ASR system described in [30]. Relevant audio samples were
available on the accompanying web page1. For Blizzard Chal-
lenge 2021, we reported the results of SH and SS tasks.
3.3.1. Naturalness and robustness

For two Mandarin corpora, our Nana-HDR was compared with
Tacotron and Fastspeech. Both models had the single type of
encoder and decoder. All models were trained with the same
number of iterations (300,000) to ensure their performance.

1https://linshilun.github.io/nanahdrsamples/nanahdr.html

Table 1 and Table 2 contain MOS and CMOS results. It
can be seen that Nana-HDR filled the naturalness gap between
Fastspeech and Tacotron on both corpora. Listeners preferred
the results synthesized by Nana-HDR to those synthesized by
the other two systems. The results indicated that our Nana-HDR
has achieved competitive performance in naturalness. In the
aspect of robustness, because of the bad attention alignments,
Tacotron with GMM-based attention had overall failure rates of
1.5% and 2.8% on two corpora. There was no serious synthesis
failure in non-attentive models. General speech recognition was
performed for synthesis samples without serious failure. WERs
are recorded in Table 3. The results indicate that Nana-HDR
achieved the lowest WER whether trained with a studio quality
corpus or with a challenging audio-book corpus.

Table 1: MOS with 95% confidence intervals.

Model female male

Fastspeech 4.10± 0.05 4.08± 0.06
Tacotron-GMMA 4.20± 0.04 4.13± 0.06

Nana-HDR 4.22± 0.04 4.23± 0.05
Ground truth 4.41± 0.04 4.37± 0.04

Table 2: CMOS comparison, the p-value<0.01.

Model female male

Nana-HDR 0.000 0.000
Tacotron-GMMA -0.245 -0.311

Fastspeech -0.336 -0.363

Table 3: Word error rate of the neural TTS models.

Model female male

Tacotron-GMMA 2.8% 4.1%
Fastspeech 2.7% 3.4%
Nana-HDR 2.0% 2.1%

For Blizzard Challenge 2021, the results are shown in the
figure 4, 5, 6 and 7. The identifier of natural speech is R, and
our system is C. There was a gap between the Nana-HDR and
some other systems (and natural speech). We concluded that
there were three possible reasons related to it. The first was that
the training text did not contain prosody related information.
The second was that a small corpus was used for training, so
that the model might not be fully trained. The last was that the
sampling rate of audio synthesized by our system is relatively
low (System A, F, K, L and R is 48KHz. System D, E, G and J
is 22KHz. System B, C and N is 16KHz).
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Figure 4: Boxplot of similarity scores of submitted systems (SH).
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Figure 5: Boxplot of MOS of submitted systems (SH).
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Figure 6: Boxplot of similarity scores of submitted systems (SS).
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Figure 7: Boxplot of MOS of submitted systems (SS).

3.3.2. Ablation studies

We attributed three possible reasons why Nana-HDR can
achieve good naturalness and robustness. First, the hybrid struc-
ture without attention model; secondly, the strong text feature
extraction ability of the Dense-fuse encoder; thirdly, stable con-
ditional generation ability of non-autoregressive stateful RNN
decoder. The previous experimental results demonstrated the
advantages of non-attentive structure with hybrid Transformer-
based encoder and RNN-based decoder. Next, we conducted
ablation studies to verify the effectiveness of Dense-fuse en-
coder and non-autoregressive RNN-based decoder in Nana-
HDR. The results are shown in the table 4, 5 and 6.

First, it was found that the duration extractor often failed to
align when feature fusions were removed from the Dense-fuse
encoder. And the absence of fine feature fusion led to inaccurate

duration extraction of long pause. Therefore, we used the du-
ration extractor with the original Dense-fuse encoder in subse-
quent experiments. Removing feature fusions from Nana-HDR
(Nana-HDR-Nofusion) resulted in -0.153 and -0.258 CMOS.
The WERs on both corpora were also higher. Then, we re-
placed the Dense-fuse encoder with the commonly used RNN-
based CBHG encoder (Nana-HDR-CBHGE). This reduced the
MOS on two corpora by 1.7% and 5.2% respectively. In terms
of CMOS, listeners preferred the results synthesized by the sys-
tem without replacement. Using CBHG encoder also resulted
in higher WERs on both corpora. We argued that the output
of the Dense-fuse encoder obtained better representation abil-
ity which made Nana-HDR perform better. On the one hand,
rich linguistic information helped to improve the naturalness.
On the other hand, it was more suitable for the text encoding
with stronger representation capability to be the only input of
non-autoregressive RNN-based decoder.

Then we replaced the non-autoregressive RNN-based de-
coder with an autoregressive one (Nana-HDR-ARD) which led
to significant degradation in naturalness, robustness and speed
(reduced by 8.85x). On the challenging audio-book corpus, we
found that there were obvious word skipping and mispronunci-
ation in some in-domain sentences, which has not been seen in
other experiments. We held that autoregressive decoder without
frame reduction was more sensitive to the exposure bias and the
local information preference, which increased the bad case rate.

Ablation studies demonstrated that Dense-fuse encoder and
non-autoregressive RNN-based decoder were effective compo-
nents of Nana-HDR.

Table 4: MOS (ablation studies) with 95% confidence intervals.

Model female male

Nana-HDR-Nofusion 4.20± 0.04 4.18± 0.05
Nana-HDR-CBHGE 4.15± 0.06 4.01± 0.06

Nana-HDR-ARD 4.11± 0.08 3.73± 0.07

Table 5: CMOS comparison, the p-value<0.01.

Model female male

Nana-HDR-Nofusion -0.153 -0.258
Nana-HDR-CBHGE -0.265 -0.471

Nana-HDR-ARD -0.349 -0.694

Table 6: Word error rate of models (ablation studies).

Model female male

Nana-HDR-Nofusion 2.2% 2.4%
Nana-HDR-CBHGE 2.5% 3.3%

Nana-HDR-ARD 2.5% 4.4%

4. Conclusions
In this paper, we proposed Nana-HDR, a non-attentive non-
autoregressive hybrid model for TTS. By fully exploiting the
advantages of each component, Nana-HDR achieves competi-
tive performance on two Mandarin corpora in both naturalness
and robustness compared with Tacotron and Fastspeech. It also
shows potential on a small Spanish corpus of Blizzard Chal-
lenge 2021. If the text can be annotated more richly (such as
adding pause) and the training audio can be preprocessed perti-
nently, Nana-HDR may also achieve good performance.
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