Edinburgh Speech Tools  2.4-release
 All Classes Functions Variables Typedefs Enumerations Enumerator Friends Pages
sigpr_example.cc
1 /************************************************************************/
2 /* */
3 /* Centre for Speech Technology Research */
4 /* University of Edinburgh, UK */
5 /* Copyright (c) 1996,1997 */
6 /* All Rights Reserved. */
7 /* */
8 /* Permission is hereby granted, free of charge, to use and distribute */
9 /* this software and its documentation without restriction, including */
10 /* without limitation the rights to use, copy, modify, merge, publish, */
11 /* distribute, sublicense, and/or sell copies of this work, and to */
12 /* permit persons to whom this work is furnished to do so, subject to */
13 /* the following conditions: */
14 /* 1. The code must retain the above copyright notice, this list of */
15 /* conditions and the following disclaimer. */
16 /* 2. Any modifications must be clearly marked as such. */
17 /* 3. Original authors' names are not deleted. */
18 /* 4. The authors' names are not used to endorse or promote products */
19 /* derived from this software without specific prior written */
20 /* permission. */
21 /* */
22 /* THE UNIVERSITY OF EDINBURGH AND THE CONTRIBUTORS TO THIS WORK */
23 /* DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING */
24 /* ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT */
25 /* SHALL THE UNIVERSITY OF EDINBURGH NOR THE CONTRIBUTORS BE LIABLE */
26 /* FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES */
27 /* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN */
28 /* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, */
29 /* ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF */
30 /* THIS SOFTWARE. */
31 /* */
32 /************************************************************************/
33 /* */
34 /* Author: Paul Taylor (pault@cstr.ed.ac.uk) */
35 /* Date: Fri May 9 1997 */
36 /* ------------------------------------------------------------------- */
37 /* Examples of Generation of Acoustic Feature Vectors from Waveforms */
38 /* */
39 /************************************************************************/
40 
41 #include <cstdlib>
42 #include "EST_sigpr.h"
43 #include "EST_cmd_line.h"
44 #include "EST_inline_utils.h"
45 #include "EST_sigpr.h"
46 
47 /**@name Signal processing example code
48  *
49  * @toc
50  */
51 //@{
52 
53 EST_StrList empty;
54 
55 void print_map(EST_TrackMap &t);
56 void print_track_map(EST_Track &t);
57 
58 int main(void)
59 
60 {
61  EST_StrList base_list; // decl
62  EST_StrList delta_list; // decl
63  EST_StrList acc_list; // decl
64  EST_Option op, al; // decl
65  init_lib_ops(al, op);
66  EST_Wave sig; // decl
67  EST_Track fv, part; // decl
68  float shift; // decl
69  int i;
70 
71 
72  cout << "position 1\n";
73 
74  /**@name Producing a single type of feature vector for an utterance
75 
76  A number of types of signal processing can be performed by the
77  sig2coef function. The following code demonstrates a simple
78  case of calculating the linear prediction (LP) coefficients for
79  a waveform.
80 
81  First set the order of the lpc analysis to 16 (this entails 17 actual
82  coefficients) and then load in the waveform to be analysed.
83 
84  */
85  //@{
86 
87 
88  //@{ code
89 
90  int lpc_order = 16;
91  sig.load(DATA "/kdt_001.wav");
92 
93  //@} code
94 
95  /** Now allocate enough space in the track to hold the analysis.
96  The following command resizes fv to have enough frames for
97  analysis frames at 0.01 intervals up to the end of the waveform,
98  (sig.end()), and enough channels to store lpc_order + 1 coefficients.
99  The channels are named so as to take lpc coefficients.
100  */
101  //@{ code
102  int num_frames;
103  num_frames = (int)ceil(sig.end() / 0.01);
104  fv.resize(num_frames, lpc_order + 1);
105  //@} code
106 
107  /** The positions of the frames, corresponding to the middel of their
108  analysis window also needs to be set. For fixed frame analysis, this
109  can be done with the fill_time() function: */
110 
111  //@{ code
112  fv.fill_time(0.01);
113  //@} code
114 
115  /** The simplest way to do the actual analysis is as follows, which
116  will fill the track with the values from the LP analysis using the
117  default processing controls.
118  */
119 
120  //@{ code
121  sig2coef(sig, fv, "lpc");
122  //@} code
123 
124  /** In this style of analysis, default values are used to control the
125  windowing mechanisms which split the whole signal into frames.
126 
127  Specifically, each frame is defined to start a certain distance
128  before the time interval, and extending the same distance after.
129  This distance is calculated as a function of the local window
130  spacing and can be adjusted as follows:
131 
132  Extending one time period before and one time period after the
133  current time mark:
134  */
135  //@{ code
136  sig2coef(sig, fv, "lpc", 2.0);
137  //@} code
138  /** Extending 1.5 time periods before and after the
139  current time mark, etc;
140  */
141  //@{ code
142  sig2coef(sig, fv, "lpc", 3.0);
143  //@} code
144 
145  /** The type of windowing function may be changed also as this
146  can be passed in as an optional argument. First we
147  create a window function (This is explained more in \Ref{Windowing}).
148  */
149  //@{ code
150  EST_WindowFunc *wf = EST_Window::creator("hamming");
151  //@} code
152  /** and then pass it in as the last argument
153  */
154  //@{ code
155  sig2coef(sig, fv, "lpc", 3.0, wf);
156  //@} code
157  //@}
158 
159  /**@name Pitch-Synchronous vs fixed frame analysis.
160 
161  Most of the core signal processing functions operate on individual
162  frames of speech and are oblivious as to how these frames were
163  extracted from the original speech. This allows us to take the frames
164  from anywhere in the signal: specifically, this facilitates two
165  common forms of analysis:
166 
167  <formalpara><title>fixed frame</title><para>
168  The time points are space at even intervals throughout the signal.
169  </para></formalpara>
170  <formalpara><title>pitch-synchronous</title><para>
171  The time points represent <emphasis>pitchmarks</emphasis>
172  and correspond to a specific position in each pitch period,
173  e.g. the instant of glottal closure.</para></formalpara>
174  <para>
175 
176  It is a simple matter to fill the time array, but normally
177  pitchmarks are read from a file or taken from another signal
178  processing algorithm (see \Ref{Pitchmark functions.}).
179  </para>
180  <para>
181 
182 
183  There are many ways to fill the time array for fixed frame analysis.
184 
185  manually:
186 
187  */
188  //@{
189 
190  //@{ code
191  int num_frames = 300;
192  fv.resize(num_frames, lpc_order + 1);
193  shift = 0.01; // time interval in seconds
194 
195  for (i = 0; i < num_frames; ++i)
196  fv.t(i) = shift * (float) i;
197  //@} code
198  /** or by use of the member function \Ref{EST_Track::fill_time}
199  */
200 
201  //@{ code
202  fv.fill_time(0.01);
203  //@} code
204 
205  /** Pitch synchronous values can simply be read from pitchmark
206  files:
207  */
208  //@{ code
209  fv.load(DATA "/kdt_001.pm");
210  make_track(fv, "lpc", lpc_order + 1);
211  //@} code
212 
213  /** Regardless of how the time points where obtain, the analysis
214  function call is just the same:
215  */
216  //@{ code
217  sig2coef(sig, fv, "lpc");
218  //@} code
219  //@}
220 
221  cout << "position 3\n";
222 
223  /**@name Naming Channels
224  @id sigpr-example-naming-channels
225  Multiple types of feature vector can be stored in the same Track.
226  Imagine that we want lpc, cepstrum and power
227  coefficients in that order in a track. This can be achieved by using
228  the \Ref{sig2coef} function multiple times, or by the wrap
229  around \Ref{sigpr_base} function.
230  </para><para>
231 
232  It is vitally important here to ensure that before passing the
233  track to the signal processing functions that it has the correct
234  number of channels and that these are appropriately named. This is
235  most easily done using the track map facility, explained
236  in <LINK LINKEND="proan129">Naming Channels</LINK>
237  </para><para>
238 
239  For each call, we only us the part of track that is relevant.
240  The sub_track member function of \Ref{EST_Track} is used to get
241  this. In the following example, we are assuming here that
242  fv has sufficient space for 17
243  lpc coefficients, 8 cepstrum coefficients and power and that
244  they are stored in that order.
245 
246  */
247  //@{
248  //@{ code
249 
250  int cep_order = 16;
251  EST_StrList map;
252 
253  map.append("$lpc-0+" Stringtoi(lpc_order));
254  map.append("$cepc-0+" Stringtoi(cep_order));
255  map.append("power");
256 
257  fv.resize(EST_CURRENT, map);
258  //@} code
259 
260  /** An alternative is to use <function>add_channels_to_map()</function>
261  which takes a list of coefficient types and makes a map.
262  The order of each type of processing is extracted from
263  op.
264  */
265 
266  //@{ code
267 
268  EST_StrList coef_types;
269 
270  coef_types.append("lpc");
271  coef_types.append("cep");
272  coef_types.append("power");
273 
274  map.clear();
275 
276  add_channels_to_map(map, coef_types, op);
277  fv.resize(EST_CURRENT, map);
278 
279  //@} code
280 
281  /** After allocating the right number of frames and channels
282  in {\tt fv}, we extract a sub_track, which has all the frames
283  (i.e. between 0 and EST_ALL) and all the lpc channels
284  */
285  //@{ code
286  fv.sub_track(part, 0, EST_ALL, 0, "lpc_0", "lpc_N");
287  //@} code
288  /** now call the signal processing function on this part:
289  */
290  //@{ code
291  sig2coef(sig, part, "lpc");
292  //@} code
293 
294  /** We repeat the procedure for the cepstral coefficients, but this
295  time take the next 8 channels (17-24 inclusive) and calculate the coefficients:
296  */
297  //@{ code
298  fv.sub_track(part, 0, EST_ALL, "cep_0", "cep_N");
299 
300  sig2coef(sig, part, "cep");
301  //@} code
302  /** Extract the last channel for power and call the power function:
303  */
304  //@{ code
305  fv.sub_track(part, 0, EST_ALL, "power", 1);
306  power(sig, part, 0.01);
307 
308  //@} code
309 
310  /** While the above technique is adequate for our needs and is
311  a useful demonstration of sub_track extraction, the
312  \Ref{sigpr_base} function is normally easier to use as it does
313  all the sub track extraction itself. To perform the lpc, cepstrum
314  and power analysis, we put these names into a StrList and
315  call \Ref{sigpr_base}.
316  */
317  //@{ code
318  base_list.clear(); // empty the list, just in case
319  base_list.append("lpc");
320  base_list.append("cep");
321  base_list.append("power");
322 
323  sigpr_base(sig, fv, op, base_list);
324  //@} code
325  /** This will call \Ref{sigpr_track} as many times as is necessary.
326  */
327  //@}
328 
329  /**@name Producing delta and acceleration coefficients
330 
331  Delta coefficients represent the numerical differentiation of a
332  track, and acceleration coefficients represent the second
333  order numerical differentiation.
334 
335  By convention, delta coefficients have a "_d" suffix and acceleration
336  coefficients "_a". If the coefficient is multi-dimensional, the
337  numbers go after the "_d" or "_a".
338 
339  */
340  //@{
341  //@{ code
342 
343  map.append("$cep_d-0+" Stringtoi(cep_order)); // add deltas
344  map.append("$cep_a-0+" Stringtoi(cep_order)); // add accs
345 
346  fv.resize(EST_CURRENT, map); // resize the track.
347  //@} code
348  /**
349  Given a EST_Track of coefficients {\tt fv}, the \Ref{delta}
350  function is used to produce the delta equivalents {\tt
351  del}. The following uses the track allocated above and
352  generates a set of cepstral coefficients and then makes their
353  delta and acc:
354 
355  */
356  //@{ code
357 
358  EST_Track del, acc;
359 
360  fv.sub_track(part, 0, EST_ALL, 0, "cep_0", "cep_N"); // make subtrack of coefs
361  sig2coef(sig, part, "cep"); // fill with cepstra
362 
363  // make subtrack of deltas
364  fv.sub_track(del, 0, EST_ALL, 0, "cep_d_0", "cep_d_N");
365  delta(part, del); // calculate deltas of part, and place answer in del
366 
367  // make subtrack of accs
368  fv.sub_track(acc, 0, EST_ALL, 0, "cep_a_0", "cep_a_N");
369  delta(del, acc); // calculate deltas of del, and place answer in acc
370  //@} code
371  /** It is possible to directly calculate the delta coefficients of
372  a type of coefficient, even if we don't have the base type.
373  \Ref{sigpr_delta} will process the waveform, make a temporary
374  track of the required type "lpc" and calculate the delta of this.
375  </para><para>
376  The following makes a set of delta reflection coefficients:
377 
378  */
379  //@{ code
380  map.append("$ref_d-0+" Stringtoi(lpc_order)); // add to map
381  fv.resize(EST_CURRENT, map); // resize the track.
382 
383  sigpr_delta(sig, fv, op, "ref");
384  //@} code
385  /** an equivalent function exists for acceleration coefficients:
386  */
387  //@{ code
388  map.append("$lsf_a-0+" Stringtoi(lpc_order)); // add acc lsf
389  fv.resize(EST_CURRENT, map); // resize the track.
390 
391  sigpr_acc(sig, fv, op, "ref");
392 
393  //@} code
394  //@}
395 
396  /**@name Windowing
397 
398  The \Ref{EST_Window} class provides a variety of means to
399  divide speech into frames using windowing mechanisms.
400 
401  </para><para>
402  A window function can be created from a window name using the
403  \Ref{EST_Window::creator} function:
404  */
405  //@{
406  //@{ code
407 
408  EST_WindowFunc *hamm = EST_Window::creator("hamming");
409  EST_WindowFunc *rect = EST_Window::creator("rectangular");
410  //@} code
411  /** This function can then be used to create a EST_TBuffer of
412  window values. In the following example the values from a
413  256 point hamming window are stored in the buffer win_vals:
414  */
415  //@{ code
416  EST_FVector frame;
417  EST_FVector win_vals;
418 
419  hamm(256, win_vals);
420  //@} code
421 
422  /** The make_window function also creates a window:
423  */
424  //@{ code
425  EST_Window::make_window(win_vals, 256, "hamming",-1);
426  //@} code
427 
428  /** this can then be used to make a frame of speech from the main EST_Wave
429  sig. The following example extracts speech starting at sample 1000:
430  */
431  //@} code
432  for (i = 0; i < 256; ++i)
433  frame[i] = (float)sig.a(i + 1000) * win_vals[i];
434  //@} code
435 
436  /** Alternatively, exactly the same operation can be performed in a
437  single step by passing the window function to the
438  \Ref{EST_Window::window_signal} function which takes a
439  \Ref{EST_Wave} and performs windowing on a section of it,
440  storing the output in the \Ref{EST_FVector} {\tt frame}.
441  */
442  //@{ code
443  EST_Window::window_signal(sig, hamm, 1000, 256, frame, 1);
444  //@} code
445  /** The window function need not be explicitly created, the window
446  signal can work on just the name of the window type:
447  */
448 
449  //@{ code
450  EST_Window::window_signal(sig, "hamming", 1000, 256, frame, 1);
451  //@} code
452 
453  //@}
454  /**@name Frame based signal processing
455  @id sigpr-example-frames
456  The signal processing library provides an extensive set of functions
457  which operate on a single frame of coefficients.
458  The following example shows one method of splitting the signal
459  into frames and calling a signal processing algorithm.
460 
461  First set up the track for 16 order LP analysis:
462 
463  */
464  //@{
465  //@{ code
466 
467  map.clear();
468  map.append("$lpc-0+16");
469 
470  fv.resize(EST_CURRENT, map);
471 
472  //@} code
473  /** In this example, we take the analysis frame length to be 256 samples
474  long, and the shift in samples is just the shift in seconds times the
475  sampling frequency.
476  */
477  //@{ code
478  int s_length = 256;
479  int s_shift = int(shift * float(sig.sample_rate()));
480  EST_FVector coefs;
481  //@} code
482 
483  /** Now we set up a loop which calculates the frames one at a time.
484  {\tt start} is the start position in samples of each frame.
485  The \Ref{EST_Window::window_signal} function is called which
486  makes a \Ref{EST_FVector} frame of the speech via a hamming window.
487 
488  Using the \Ref{EST_Track::frame} function, the EST_FVector
489  {\tt coefs} is set to frame {\tt k} in the track. It is important
490  to understand that this operation involves setting an internal
491  smart pointer in {\tt coefs} to the memory of frame {\tt k}. This
492  allows the signal processing function \Ref{sig2lpc} to operate
493  on an input and output \Ref{EST_FVector}, without any copying to or
494  from the main track. After the \Ref{sig2lpc} call, the kth frame
495  of {\tt fv} is now filled with the LP coefficients.
496  */
497  //@{ code
498  for (int k1 = 0; k1 < fv.num_frames(); ++k1)
499  {
500  int start = (k1 * s_shift) - (s_length/2);
501  EST_Window::window_signal(sig, "hamming", start, s_length, frame, 1);
502 
503  fv.frame(coefs, k1); // Extract a single frame
504  sig2lpc(frame, coefs); // Pass this to actual algorithm
505  }
506  //@} code
507 
508  /** A slightly different tack can be taken for pitch-synchronous analysis.
509  Setting up fv with the pitchmarks and channels:
510  */
511  //@{ code
512  fv.load(DATA "/kd1_001.pm");
513  fv.resize(EST_CURRENT, map);
514  //@} code
515  /** Set up as before, but this time calculate the window starts and
516  lengths from the time points. In this example, the length is a
517  {\tt factor} (twice) the local frame shift.
518  Note that the only difference between this function and the fixed
519  frame one is in the calculation of the start and end points - the
520 
521  windowing, frame extraction and call to \Ref{sig2lpc} are exactly
522  the same.
523  */
524  //@{ code
525  float factor = 2.0;
526 
527  for (int k2 = 0; k2 < fv.num_frames(); ++k2)
528  {
529  s_length = irint(get_frame_size(fv, k2, sig.sample_rate())* factor);
530  int start = (irint(fv.t(k2) * sig.sample_rate()) - (s_length/2));
531 
532  EST_Window::window_signal(sig, wf, start, s_length, frame, 1);
533 
534  fv.frame(coefs, k2);
535  sig2lpc(frame, coefs);
536  }
537  //@} code
538  //@}
539 
540  /**@name Filtering
541 
542  In the EST library we so far have two main types of filter,
543  {\bf finite impulse response (FIR)} filters and {\bf linear
544  prediction (LP)} filters. {\bf infinite impulse response (IIR)}
545  filters are not yet implemented, though LP filters are a
546  special case of these.
547  </para><para>
548  Filtering involves 2 stages: the design of the filter and the
549  use of this filter on the waveform.
550  </para><para>
551  First we examine a simple low-pass filter which attempts to suppress
552  all frequencies about a cut-off. Imagine we want to low pass filter
553  a signal at 400Hz. First we design the filter:
554  */
555  //@{
556  //@{ code
557 
558  EST_FVector filter;
559  int freq = 400;
560  int filter_order = 99;
561 
562  filter = design_lowpass_FIR_filter(sig.sample_rate(), 400, 99);
563  //@} code
564  /** And now use this filter on the signal:
565  */
566  //@{ code
567  FIRfilter(sig, filter);
568  //@} code
569  /** For one-off filtering operations, the filter design can be
570  done in the filter function itself. The \Ref{FIRlowpass_filter}
571  function takes the signal, cut-off frequency and order as
572  arguments and designs the filter on the fly. Because of the
573  overhead of filter design, this function is expensive and
574  should only be used for one-off operations.
575  */
576  //@{ code
577  FIRlowpass_filter(sig, 400, 99);
578  //@} code
579  /** The equivalent operations exist for high-pass filtering:
580  */
581  //@{ code
582  filter = design_highpass_FIR_filter(sig.sample_rate(), 50, 99);
583  FIRfilter(sig, filter);
584  FIRhighpass_filter(sig, 50, 99);
585  //@} code
586  /** Filters of arbitrary frequency response can also be designed using
587  the \Ref{design_FIR_filter} function. This function takes a
588  EST_FVector of order $2^{N}$ which specifies the desired frequency
589  response up to 1/2 the sampling frequency. The function returns
590  a set of filter coefficients that attempt to match the desired
591  reponse.
592  */
593  //@{ code
594  EST_FVector response(16);
595  response[0] = 1;
596  response[1] = 1;
597  response[2] = 1;
598  response[3] = 1;
599  response[4] = 0;
600  response[5] = 0;
601  response[6] = 0;
602  response[7] = 0;
603  response[8] = 1;
604  response[9] = 1;
605  response[10] = 1;
606  response[11] = 1;
607  response[12] = 0;
608  response[13] = 0;
609  response[14] = 0;
610  response[15] = 0;
611 
612  filter = design_FIR_filter(response, 15);
613 
614  FIRfilter(sig, response);
615  //@} code
616  /**The normal filtering functions can cause a time delay in the
617  filtered waveform. To attempt to eliminate this, a set of
618  double filter function functions are provided which guarantees
619  zero phase differences between the original and filtered waveform.
620  */
621  //@{ code
622  FIRlowpass_double_filter(sig, 400);
623  FIRhighpass_double_filter(sig, 40);
624  //@} code
625 
626  /** Sometimes it is undesirable to have the input signal overwritten.
627  For these cases, a set of parallel functions exist which take
628  a input waveform for reading and a output waveform for writing to.
629  */
630  //@{ code
631  EST_Wave sig_out;
632 
633  FIRfilter(sig, sig_out, response);
634  FIRlowpass_filter(sig, sig_out, 400);
635  FIRhighpass_filter(sig, sig_out, 40);
636  //@} code
637  //@}
638 
639 }
640 
641 //@}